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Different neural coding principles operate
at various spatial scales of the brain, con-
tributing to different cognitive functions
and collectively generating complex
behavior.

The association between neural scales
and cognitive processes can be
assessed using encoding and decoding
models, and model performance can
be compared across scales.
Cognition arises from neural operations at multiple spatial scales, from individual
neurons to large-scale networks. Despite extensive research on coding principles
and emergent cognitive processes across brain areas, investigation across scales
has been limited. Here, we propose ways to test the idea that different cognitive
processes emerge from distinct information coding principles at various scales,
which collectively give rise to complex behavior. This approach involves compar-
ing brain–behavior associations and the underlying neural geometry across
scales, alongside an investigation of global and local scale interactions. Bridging
findings across species and techniques through open science and collaborations
is essential to comprehensively understand the multiscale brain and its functions.
The geometry of neural representations
and dynamics reveals information coding
principles at each scale, which can be
compared across scales.

How global and local neural scales and
their interaction generate cognitive pro-
cesses can be understood both biologi-
cally and computationally.

A comprehensive understanding of neu-
ral scales and their functions comes from
theoretically bridging findings across
model species and techniques, together
with open science practices and cross-
lab collaborations.
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Cognition emerges from neural operations at multiple spatial scales
The brain operates as a multiscale system, with cognitive processes represented across various
spatial scales, from individual neurons and synapses to regions and large-scale networks [1]. For
instance, episodic memory is encoded not only in the electrical and chemical signals at neuronal
synapses [2], but also in the firing of single neurons in the hippocampus [3], patterns of hippocam-
pal neuronal populations [4], the communication between the hippocampus and neighboring
cortical areas, such as the entorhinal cortex [5–7], and larger cortical networks, including the de-
fault mode network [8,9] (Figure 1A). This raises the question of how to determine the neural scale
(or scales) that best explains a cognitive process of interest. For example, observations that a par-
ticular brain area represents a cognitive process could be the result of brain-wide state changes
only partially captured by focusing on an isolated brain region. Similarly, identifying a brain-wide
representation (see Glossary) of a cognitive process does not preclude the possibility of a spe-
cific area or circuit being the causal source.

Scientists across fields have argued that phenomena at different scales are governed by different
principles [10]. In neuroscience, this is reflected in the view that different principles of neural cod-
ing operate at various spatial scales of the brain, leading to different cognitive functions emerging
from each scale [11]. Parallel processes at different brain scales are thought to collectively give
rise to complex behavior [12–14]. In practice, however, direct empirical tests of this perspective
have been limited because research in each subfield typically associates each cognitive process
with a specific neural scale. This limitation arises because neuroscience studies must choose
model organisms and techniques, which inherently constrains the spatiotemporal scale of the in-
vestigation. For example, human neuroimaging captures indirect, slow-fluctuating signals of the
whole brain, whereas nonhuman animal electrophysiology records fast spiking activity of neurons
in a local brain area. This disparity has made it challenging to integrate findings across scales.

Decades of research that investigated the functional roles of the brain and its parts have given us
preliminary ideas about which cognitive processes are associated with which neural scales. As
examples, sensation and motor actions are relatively localized to unimodal areas, with individual
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Glossary
Brain state: recurring pattern of brain
activity or functional coupling that is
relevant to physiological or cognitive
processes.
Causal mechanism: explanation of
specific cause-and-effect relationships
between neural activity and cognitive or
behavioral outcomes.
Descriptive mechanism: explanation
of how information is processed in the
brain to produce cognitive or behavioral
outcomes, without necessarily
identifying the underlying reasons.
Decoding model: cross-validated
model that predicts task-related
variables, cognitive states, or behavior
based on patterns of neural activity.
Encoding model: cross-validated
model that predicts brain activity based
on given stimuli or input.
High-dimensional codes:
representations that rely on relatively
many latent variables due to less
correlated and more variable neural
population activity.
Low-dimensional codes:
representations that rely on relatively few
latent variables due to highly correlated
and redundant neural population activity.
Representation: neural signal that
carries meaningful information about
internal states or the external world to
guide behavior.
neurons selectively tuned to specific features [15–17]. By contrast, vigilance and arousal are
reflected in large-scale brain state changes [18–22], instantiated by ascending neuromodulatory
signals [23,24]. However, even for these exemplar processes that appear to lie at the ends of the
local-to-global scale spectrum, the answer is not so simple when we consider various behavioral
contexts and interactions with other cognitive processes.

Thus, there remains a need to directly investigate neural operations and compare their func-
tions across spatial scales. This is timely due to the more precise and larger-scale neuroimag-
ing and electrophysiological recording techniques that have become feasible in recent years
(e.g., 7-Tesla neuroimaging in humans [25], cellular resolution brain-wide calcium imaging
[26], and simultaneous multi-site recordings using Neuropixel probes [27,28]). Technological
advances have been accompanied by progress in computational neuroscience, which has ex-
amined multiscale interaction through models and simulations [29,30] and introduced new an-
alytical approaches to investigating neural codes at each scale [31–33]. The neuroscience field
has further benefited from increased data sharing through open science practices [34–36] and
cross-lab collaborations [37], which allow researchers to work with multimodal data spanning
diverse scales.

Here, we address ways in which the field can study the brain’s cognitive functions at multiple
scales (Figure 1). As a first step, we can identify neural scales relevant to cognitive processes
by associating each process with neural features extracted from various spatial scales using
encoding or decoding models and systematically comparing model performance across
scales. Second, investigating the geometry of neural representations and dynamics at each
scale, and comparing them across scales, will provide a more mechanistic understanding of neu-
ral coding principles. Third, exploring how multiple scales interact, including how circuits operate
within larger systems and how their operations emerge from collections of neurons and synap-
ses, will inform understanding of the multiscale brain. Finally, bridging findings across species
and techniques and fostering open science and cross-lab collaborations are critical for theoretical
advances. Interpretation of findings should be confined to the probed scale, and generalization to
other scales should be cautioned unless directly tested. We use evidence from neuroimaging and
electrophysiological studies in behaving humans, nonhuman primates, and rodents to illustrate
how such cross-scale research can be conducted.

Comparison of brain–behavior associations across scales
Evidence that different cognitive processes are associated with different neural scales emerged
from predictive modeling, including encoding and decoding approaches. A recent cross-lab
collaboration recorded activity from hundreds of thousands of neurons across 267 brain
areas as mice performed a visual decision-making task [37]. The study found that neurons in
nearly all regions responded nonspecifically and simultaneously when mice initiated actions, re-
ceived rewards, and engaged in a task, paralleling distributed representation found in human
fMRI studies [38–41]. Similarly, visual stimuli and upcoming choices were represented in dis-
tributed areas of the brain. However, these processes were more strongly encoded in specific
areas and propagated to other areas with temporal delays, which was obscured in human fMRI
studies due to a slower time resolution. These findings, replicated in complementary work
[27,42–44], indicate that the relevant scale of neural correlate varies across cognitive pro-
cesses. Some processes, such as stimulus perception and choice behavior, are primarily com-
puted in local brain circuits and sequentially relayed to distributed parts of the brain to support
complex behavior. Others, such as motor action, reward processing, and engagement, are
represented simultaneously at a whole-brain scale in rodents, potentially modulated by
neuromodulatory tone [45].
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Figure 1. Schematic overview of multiscale investigation. (A) Illustration of hippocampus (HPC) function across spatial scales. The function of the HPC can be
studied at the scales of individual neurons, synaptic interactions between pairs of neurons, neuronal population activity, communication within hippocampal subfields
(e.g., CA1–CA3–dentate gyrus; anterior-to-posterior gradient), communication with the entorhinal cortex (EC) or broader default mode network (DMN) areas, including
the medial prefrontal cortex (mPFC) and the posterior medial cortex (PMC), and even interaction with macroscale brain-wide states. Among this wide range of spatial
scales, example global and local scale neural signals are noted in blue and red, respectively. Arrows indicate bidirectional interactions centered around the HPC, with
the thickness representing the relative strength of these interactions. (B) Comparisons of decoding model performance of global and local neural signals with respect to
two example task variables. The bar graph illustrates that the global signal is associated with task variable 1 but not 2, whereas the local signal is associated with task var-
iable 2 but not 1. (C) Understanding neural processes at each scale by estimating latent geometry and dynamics across task conditions. The figure shows a state space
represented by the activity of three regions (global; top) or neurons (local; bottom). Each dot represents population activity at a specifiedmoment (e.g., a time point or a trial),
with colors representing task conditions of different sensory, behavioral, or contextual variables. The top figure illustrates low-dimensional representation, where variance in
neural data is explained by a 2D subspace (gray plane), with a single coding dimension to distinguish three conditions (dotted arrow). The bottom figure illustrates high-
dimensional representation, where three coding dimensions are necessary to explain variances in neural data across task conditions. (D) Understanding the relationship
between global and local neural signals. The bottom figure illustrates hippocampal ripple activity detected by the local field potentials (LFP) in the HPC. The global functional
topography, or the coupling of the HPC with nearby DMN areas, during these ripple events can be statistically compared to the topography during periods when ripple
event is not detected. Circles denote four regions, and lines connecting the circles denote functional interactions with the thickness indicating the degree of interaction.
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These results clearly show that the relevant scales and mechanisms differ across cognitive pro-
cesses. Nevertheless, a disproportionally large body of work has focused on testing the sensitivity
of each neural feature and scale to a cognitive process of interest, rather than the specificity. That
is, while many neural featuresmay have been tested for their association with a cognitive process,
whether this association is specific to that scale or generalizable to other scales has been under-
explored. By applying predictive modeling iteratively across neural features extracted from vari-
ous scales, studies can formally compare how well each scale explains and/or predicts the
cognitive process of interest. For example, a monkey electrophysiology study directly compared
three known neural signatures of spatial attention and found that the variability in spike counts of
V4 neuronal pairs explained 79%of variance in attentional modulation, compared with single neu-
ronal metrics, such as firing rates and spike count variability (i.e., Fano Factor), which accounted
for only 9% and 4% of variance, respectively [46]. This population account was supported by a
model fitted to the same data, which showed that attention reduces variance in the shared
gain of V4 populations [47].

Although studies have had the capacity to probe multiple spatial scales simultaneously, tests for
scale specificity and generalizability have been surprisingly scarce. Instead, a more common re-
search practice has been to compare decoding accuracies of neural features that differ in the
order of statistics, extracted from the same spatial scale. A human fMRI study showed that
higher-order correlations in regional activity reflected higher-order cognitive processing during
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 3
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story listening, whereas first-order correlations and noncorrelational activity patterns reflected
lower-level perceptual and cognitive processes [48]. Moreover, patterns of pairwise regional inter-
action, but not regional or voxelwise activations, predicted changes in comprehension [49], atten-
tional engagement [50], and emotional arousal [51] during narratives. These findings suggest that
features with different order statistics and levels of granularity, even when extracted from the
same neural scale, are not simply redundant but implicate different functions.

This approach can further be used to identify the ‘building blocks’ of cognitive processes based
on their associations with different neural scales. Consider a scenario where a researcher extracts
two types of neural feature: one at the microscale and another at the macroscale. The researcher
also has two attention metrics linked to these data: one representing the severity of an attention
disorder and the other reflecting behavioral performance in an attention task. By applying a
decoding method, the researcher discovers that the microscale neural feature better predicts at-
tention task performance, while the macroscale neural feature better predicts the severity of the
attention disorder (Figure 1B). Although data types and preprocessing methods may vary across
scales, systematic comparison is possible by normalizing model performance against the chance
distribution generated for each scale. This hypothetical distinction suggests not only different
brain–behavior associations across scales, but also that the attention task and the attention dis-
order involve different aspects of attention. This insight can prompt investigation into how atten-
tion is operationalized differently in these two contexts.

Geometry of neural representations and dynamics
Encoding and decoding models provide statistical associations of brain and behavior across
scales. However, even when decoding accuracies are similar across these scales, the underlying
neural geometrymay differ. In this section, we propose examining the geometry of neural represen-
tations and dynamics, which offers mechanistic insights into how cognition emerges from neural
activity at multiple scales (we focus here on descriptive rather than causal mechanisms).

Computational neuroscience work has adopted a dynamical systems approach to explore the
geometries of neural population activity in relation to cognition (Figure 2; Box 1). In this framework,
neural activity at each time segment is represented as a point and neural dynamics as a trajectory
in a state space. The state space is defined from a specified neural scale, with each axis repre-
senting the activity of one neural unit, whether it is the firing rate of a neuron, signal in a pixel or
voxel, or mean activity level of a brain region. The neural geometry reveals the underlying latent
structure of population activity [31–33,52]. Given that neurons or regions within a population dis-
play tightly correlated responses, population activity follows stereotypical patterns and visits only
confined surfaces within the state space, known as neural manifolds or subspaces [53]. Knowing
the shape of this manifold and underlying dynamical systems is like knowing the likely routes that
brain activity can take. Knowing how task variables are represented in the manifold and how they
change across conditions, contexts, or task demands provides insight into how information is
processed by the neural population. Thus, this framework allows us to penetrate the black box
of a brain–behavior relationship and understand how information is internally organized and proc-
essed amid seemingly noisy and heterogeneous neural activity.

Global scale neural geometry
At a global scale, neuroimaging studies have investigated whole-brain activity and connectivity to
understand the geometry of neural dynamics. The axes comprising this state space correspond
to the activities of parcellated whole-brain areas. Studies have found that macroscale neural dy-
namics are low dimensional, constrained by the anatomical and functional organization of the
brain [54–56]. Given that regional activity covaries across the brain according to its modular
4 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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Figure 2. Geometry of global and local scale neural population activity. (A) Macroscale neural dynamics characterized as trajectories within a state space, where
axes represent activities of parcellated brain areas. The black dot represents population activity at each time step. A latent brain state is characterized by unique patterns of
mean activity (blue circle) and covariance between parcels (blue area) [22]. (B) Three example brain states identified using the hidden Markov model fits to the human fMRI
data [22]. The mean activity (top) and pairwise covariance (bottom) of the 25 parcels’ time series are shown for each state. (C) Illustration of the dimensionalities of neural
codes and the orthogonal representations of task variables [73]. Dots indicate representations of the four stimulus–outcome conditions in the state space (stimulus identity:
A and C; reward value: + and –), with same-colored lines indicating the same context. Empirical data recorded from the hippocampus and prefrontal cortex supported the
second account (blue contour), which exhibited high-dimensional codes while maintaining orthogonal coding of different task variables. (D) Evidence supporting high-
dimensional neural coding in the mouse visual cortex [77]. Cumulative variance explained relative to the number of neural dimensions for cross-validated principal
component analyses conducted with either 2800 images (blue) or 32 images (green). The dashed line denotes 32 dimensions. All 32 dimensions were required to
represent 32 images, whereas the required neural dimensions did not saturate (when tested up to 1000 dimensions) when representing 2800 images. (E) Evidence
supporting orthogonal neural coding of multiple task variables in the human posterior parietal cortex (PPC) [78]. (Left) Twenty-five stimuli associated with reward or
penalty in the two contexts. (Right) Multidimensional scaling (MDS) projections of fMRI data from the visual cortex (VIS) and PPC, reconstructed from coefficients of the
best-fitting, hypothesis-driven models. In PPC, representations of task-irrelevant features were compressed, while representations of the two task-relevant features in
the two contexts were orthogonalized.
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functional organization [57,58], neural dynamics are not a randomized flow in the state space of
the brain (Figure 2A). Instead, dynamics systematically traverse a relatively small number of brain
states, characterized by distinct patterns of activity and interaction [59–65] (Figure 2B). Recent
work found that these brain states commonly recur across various contexts, including tasks,
rest, and movie watching [22], and span the canonical gradients of functional brain organization
[22,66]. Importantly, these low-dimensional neural state dynamics reflect cognitive state dynam-
ics in humans during controlled task performance [67–69] and naturalistic movie watching
[49,70], with complementary evidence emerging from work in nonhuman animals [64].

Local scale neural geometry
At a local scale, research has investigated the geometry of neural representations, that is, how
task variables are encoded by the neural population. A key topic of debate has been whether
the neural representation is governed by high- or low-dimensional codes (i.e., uncorrelated
and variable versus correlated and redundant population activity), which is associated with the ef-
ficiency versus generalizability of the representation [53,71–73] (Figure 2C).

High-dimensional neural codes are efficient in distinguishing combinations of multiple variables.
For example, a study showed that the nonlinear mixed selectivity of macaque prefrontal cortical
Box 1. Dimensionality in neuroscience

The term ‘dimensionality’mathematically refers to the number of latent variables required to account for a specific propor-
tion of variance in data. In linear dimensionality reduction, this corresponds to the number of principal components (PCs)
that explain a certain amount of variance in N-dimensional data. For low-dimensional data, the variance is concentrated in
the first few eigenmodes with large eigenvalues. For high-dimensional data, the variance is distributed across eigenmodes
with similar eigenvalues.

In neuroscience, a state space is defined by each axis representing the activity of a neural unit, such as the firing rate of a
neuron, signal in a pixel or voxel, or mean activity level of a brain region. A pattern of population activity at a specified mo-
ment is geometrically conceptualized as a point in this state space. The dimensionality of neural data indicates the number
of latent axes required to explain variance in these patterns. Dimensionality, in this sense, is estimated by applying a dimen-
sionality reduction algorithm directly to neural data without associating it with task or behavioral variables.

A primary goal of characterizing neural geometry, however, is to understand how information is encoded in neural activity
patterns. Neural dimensionality can be associated with task-related variables, including sensory, behavioral, and contex-
tual variables chosen by the experimenter. This is referred to as neural coding dimensionality.

Neural coding dimensionality, also known as ‘representation dimensionality’ [71,72] or ‘embedding dimensionality’
[32,53], refers to the number of latent dimensions of neural activity required to represent and discriminate between task
variables. In practice, neural coding dimensionality is estimated in two primary ways. The first method estimates the latent
dimensions of neural data based on explained variance, then determines the number of latent dimensions needed to de-
code task variables (Figure IA). For instance, PCs extracted from neural data can be used as features in a decoding model
to distinguish between task variables. Researchers can ask whether the top-three PCs from a ten-dimensional state space
are sufficient to discriminate task conditions (low-dimensional coding) or whether all ten PCs are required (high-dimen-
sional coding). These components are derived directly from neural data, independent of task features, with the link to task
variables established in subsequent analysis.

The second way of estimating neural coding dimensionality is by directly projecting neural data onto task-related sub-
spaces that best discriminate task variables (Figure IB). This analysis identifies hyperplanes that optimally separate neural
activity patterns of different task conditions. For example, hyperplanes can be estimated with linear regression applied to
the data with respect to task variables [80]. A neural representation is considered low dimensional if a small number of la-
tent components is enough to discern task conditions.

Whether the neural code is low or high dimensional is determined relative to the dimensionality of the original state space
and the dimensionality dictated by the task variables. Estimated neural coding dimensionality is mathematically equivalent
to or lower than the original dimensionality of the neural data. The dimensionality required for successful neural coding is
the same as or higher than the dimensions of task variables [32].
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Figure I. Neural coding dimensionality. (A) Illustration of the dimensionality reduction algorithm applied to the neural
data, followed by subsequent association with task variables [78]. (Left) The latent dimensionality of the neural data is
estimated using principal component (PC) analysis. Values denote how much variance in the neural data is explained
upon retention of one to ten PCs. (Right) Decoding accuracy for task-related variables is assessed based on the
number of PCs retained. If a small number of PCs is sufficient to represent task variables, neural coding dimensionality
is low (blue lines). If a higher number of PCs is needed for representation, neural coding dimensionality is high (light-
green lines). (B) Illustration of targeted dimensionality reduction, where neural data are projected onto a hyperplane
defined by orthogonal stimulus- and choice-coding axes [81]. Modulations of neuronal firing rates by the task variables
span a 2D subspace relative to the 3D state space of firing rates. The dimensions of this subspace include a stimulus
axis (blue arrow), which captures the main variance in neural activity due to differences in stimulus values, and a choice
axis (red arrow), which captures the main variance in neural activity due to differences in decision outcomes. Lines
denote task conditions: stimulus intensity from +1 (light gray) and +2 (gray) to +3 (black), and choice of either left
(dotted) or right (solid).

Trends in Cognitive Sciences
(PFC) neurons confers high-dimensional representations, allowing binary classifications of all
combinations of task-related variables to be performed by a linear readout [74]. Indeed, increased
task complexity correlated with increased coding dimensions in the PFC [75,76]. Research that
estimated the stimulus-related variance in mouse visual cortical neurons found that the explained
variance continued to increase with the inclusion of additional neural dimensions [77] (see also
[26], which found similar results on a more global scale; Figure 2D). This suggests that neural re-
sponses need to be high dimensional and uncorrelated to be able to code multiple variables with
distinct representation patterns.

However, efficient coding alone is not enough. Neural codes need to be structured and abstract
to generalize to novel situations or contexts. This is achieved by low-dimensional and orthogonal
representation of task variables [53,71–73]. Low-dimensional neural codes confine the complex-
ity of neural representations to only a few dimensions, which increases robustness to variability
and allows selective coding of task-relevant features while ignoring the irrelevant ones. Encoding
task variables in subspaces orthogonal to one another using independent neural patterns pre-
vents interference between the codes, allowing generalization to other contexts (Figure 2C).

This coding scheme was evidenced in a study that examined whole-brain human fMRI data and
single-neuron recordings in the macaque frontal eye fields (FEF) as humans and monkeys per-
formed a context-dependent categorization task [78] (Figure 2E). In the task, the correct choice
depended on one stimulus feature in context A and another feature in context B. The early visual
cortex in humans encoded both feature dimensions irrespective of context, deploying high-
dimensional and context-agnostic representations. By contrast, in the frontoparietal regions of
both humans and monkeys, irrelevant features in each context were compressed, allowing rele-
vant features in the two contexts to be structured in low-dimensional, orthogonal subspaces.
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 7
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Additionally, a human fMRI study observed low-dimensional orthogonal coding of target and
distractor stimuli in the intraparietal sulcus during a cognitive control task [79]. Similar results
were found with monkey electrophysiology [80,81]. In an oculomotor task, prior expectations
about the visual target were encoded orthogonally to the sensory coding axis within a low-
dimensional subspace of the middle temporal visual area (MT) activity before the target appeared
[82]. Another study demonstrated that, despite heterogeneous temporal dynamics of PFC neu-
rons, their population coding of mnemonic stimuli was stable and robust across time during
working memory maintenance when projected onto a subspace orthogonal to the time-coding
axis [83].

Research has also shown that even one task variable can be represented in orthogonal subspaces
depending on task demands [84,85]. For example, motor neurons encode population activity in
two orthogonal subspaces during preparation and execution [84]. If neuronal population activity
is confined to a dimension that is orthogonal to a readout dimension, an animal can withhold mus-
cle movement despite preparatory motor neuron firing. Together, these findings suggest that task
variables are represented through a balance between efficient (high-dimensional) and structured
(low-dimensional) neural codes [73], which vary across regions and potentially across scales.

Integrating neural geometries across scales
Evidence points to relatively lower-dimensional codes at the macroscale and higher-dimensional
codes at the microscale. This variation in neural representation geometries and dynamics across
scales suggests different mechanisms of information processing. A recent preprint examined
how these opposing neural coding principles coexist across scales in a biological system [86].
The study analyzed an extensive set of openly available calcium imaging data collected from
zebrafish, nematodes, flies, mice, and macaques. Calculating pairwise neuronal correlations
from micro-, meso-, to macroscales, the study found that absolute correlation increased with
scale, recapitulating the high-dimensional and efficient microscale activity and low-dimensional
and redundant macroscale activity that were conserved across species. Network simulations
found that this efficiency–redundancy balance facilitates information flow, increases susceptibility
to a wide range of stimuli, and allows flexible adaptation to behavioral demands [86].

Many studies have characterized regional differences in neural geometries [78,87]. The logic of
comparing across regions can be extended to comparing across scales. Researchers can char-
acterize neural geometries at multiple neural scales (e.g., finding low-dimensional subspaces
using multidimensional scaling [87]) and compare how information is processed differently.

Global and local scale interaction
Howdo brain-wide state dynamics interact with local information processing [88]? To understand
cognitive functions associated with different neural scales, wemust understand how these scales
are biologically intertwined.

Empirical understanding
Work has begun to probe multiple spatial scales simultaneously in a single study [31]. For exam-
ple, a recent study conducted simultaneous local electrophysiological recordings of either V1 or
retrosplenial cortex (RSP) and wide-field calcium imaging of the dorsal cortex of head-fixed mice
as the mice were free to run on a rotating wheel [89]. Investigating how individual neurons couple
to the broader cortex, the study found that V1 and RSP neurons that were less coupled to nearby
neurons had more global connections with other cortical areas (Figure 3A). Another study ana-
lyzed publicly available datasets of large-scale extracellular recordings of head-fixed mice [90].
Hippocampal sharp wave ripples not only modulated intrahippocampal activity, but also
8 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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modulated brain-wide firing rates and functional network topology (Figure 3B). Using fMRI, re-
searchers found that discrete states of the ventromedial prefrontal cortex (vmPFC), detected
with a hidden Markov model, mapped not only onto participants’ affective experiences during
movie watching, but also to systematic changes in whole-brain univariate activity [91]. This
shows that affective state dynamics are not only represented in the vmPFC, but also that
vmPFC activity states coincide with characteristic changes in brain-wide activity (Figure 3C).
Other fMRI work showed that the large-scale functional topography of the cortex, which is mod-
ulated by arousal and cognitive states, is associated with the activity of the thalamus [92] and re-
capitulated by thalamocortical connectivity [93]. Together, these studies demonstrate an exciting
new avenue of research where neural activities at different scales can be probed simultaneously.
This allows us to investigate how neural activity at local and global scales interacts to give rise to
cognitive processes. Future work could also ask whether functions arise from the global–local in-
teraction itself in addition to the isolated scale alone.

Computational understanding
Empirical work gives us biological insights into global–local scale interactions and how they are
modulated by cognitive states and behavioral contexts. Computational neuroscience has further
explained these interactions by developing generative models that simulate neurophysiological
properties of the brain [29,30,94]. For example, large-scale neural mass models characterize
brain activity as an interconnected network of local nodes [95,96]. In one implementation of this
model, the network is constrained by structural connectivity (i.e., white matter tracts measured
with diffusion tensor imaging), with each node (representing a parcellated cortical area) modeled
by interconnected excitatory and inhibitory local neural mass models [96]. By simulating brain ac-
tivity (e.g., measured with fMRI, EEG, or MEG) while controlling the parameters of this network,
researchers can determine which scales and parameters are causally responsible for specific
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Figure 3. Interactions between global and local neural processes. (A) Simultaneous imaging of themouse dorsal cortex and recording of the spiking neuronal population
[89]. Units recorded in V1 and retrosplenial cortex (RSP) were grouped based on the degree of local population coupling, which is the correlation between the spiking of a neuron
and the sum of spikes from all other simultaneously recorded nearby neurons (locally high-coupled units: above the 80th percentile; locally low-coupled units: below the 20th
percentile). The convolved spike trains of these units were correlated with changes in calcium signals ( F/F) of every pixel across the dorsal cortex measured with wide-field
imaging, with the color indicating z-scored correlation coefficients. Red circles denote recording sites. (B) Changes in brain-wide activity and functional topography at moments
when hippocampal ripple activity is detected [90]. (Top) Average firing rates of the four major extrahippocampal areas, time-aligned to hippocampal sharp-wave ripples. (Bottom)
The undirected graph shows mutual information between pairs of brain regions during hippocampal sharp-wave ripples. Abbreviation: HPF, hippocampal formation. (C) Brain-
wide activity time-aligned to states defined by the activity patterns of a local brain area [91]. (Left) An example participant’s ventromedial prefrontal cortex (vmPFC) states inferred
by a hidden Markov model (HMM). (Right) Whole-brain univariate contrasts computed based on the HMM state occurrences.
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Outstanding questions
Cognitive processes are represented
across different temporal scales
of the brain, ranging from fast
(e.g., milliseconds and seconds) to
slow (e.g., minutes and hours) time-
scales. How can we investigate cog-
nitive functions of neural processes
at each timescale, and their relation-
ships across scales?

Empirical cross-scale comparisons are
frequently confounded by variations in
model species, recording techniques,
and subsequent preprocessing pipe-
lines tailored to each data type. How
can we harmonize these diverse data
types to make fair comparisons across
scales?

Causal mechanism studies can test
whether the effects of perturbation,
stimulation, or lesion are more
pronounced at global or local scales.
How can we assess the causal effects
of global–local scale interactions?

Low-dimensional state spaces have
been shown to encode features of
controlled tasks and associated be-
havior. Does the low-dimensional cod-
ing principle similarly explain cognitive
processes in less controlled, more nat-
uralistic contexts?
brain functions. Local circuit models, which simulate the neural activity of local areas, have ad-
vanced to a level of simulating behavior in different task contexts and cognitive states [52]. Al-
though current large-scale models have simulated neural activity at rest [95–97], work is
heading toward simulating task-based neural data to understand how cognition modulates
global–local interaction and neural topography at various scales [98].

Concluding remarks
Neuroscience has long focused on dissecting the brain into its parts and understanding the cog-
nitive functions associated with each part. The spatial scales at which these studies were con-
ducted received less attention, often dictated by the choice of model species and
neuroscientific techniques. Consequently, theories and empirical tests of how functions emerge
from each scale, and from interactions across scales, have been scarce. However, we now
have the tools to test how cognitive functions emerge from different scales.

To achieve this, we need to expand our current approaches to encompass multiple scales. Brain–
behavior associations identified through predictive modeling and neural geometries identified
through dynamical systems approaches should be tested across scales for empirical comparisons.
Interactions between global and local scales should be characterized both at empirical (descriptive)
and computational (generative) levels. However, the range of scales that any single study or lab can
probe is limited by expertise, time, cost, and other constraints. Identifying functions associated with
various scales is not a task that can be easily achieved by a single lab. A collective effort is needed,
requiring us to theoretically bridge findings from different animal models and techniques uniquely
suited to probe different scales of neural processing. Open science practices, particularly data,
code, and model sharing, and cross-lab collaborations can foster the use of diverse datasets and
computational approaches to investigate multiple neural scales (see Outstanding questions).

Finally, although this may sound obvious to some readers, we cannot help but emphasize one
last point. Successful crosstalk starts from researchers’ awareness that the scale they probe is
the tip of an iceberg and their findings are not guaranteed to generalize across scales. For ex-
ample, if a researcher uses fMRI to investigate decision-making, they should acknowledge that
they are looking at a specific representation that occurs at a temporal scale of seconds and a
spatial scale of ~2 mm3 voxels, which is a blood-flow proxy for an averaged activity of a million
neurons and billions of synapses. If a researcher records the spiking activity of PFC neurons to
investigate decision-making, they should acknowledge that the evidence is a part of the whole;
their findings may be specific to PFC neurons, but not others, and the findings may have differ-
ent computational roles when interaction with other regions or brain-wide state modulations
are taken into account. Even in studies that argue for causal effects by directly manipulating
neural activity using microstimulation, lesions, or optogenetics, observed effects may not indi-
cate that the targeted area is a single source of the cognitive function but only that it contributes
as a part of a larger processing network. Acknowledging the limited scale that each study
probes will explicitly position the findings along the continuum of all possible scales, allowing
us to connect the dots across scales and identify missing pieces (Box 2).

In summary, cognition and behavior emerge from neural operations at various spatial scales. Iso-
lating a single neural scale provides a limited understanding of complex behavior. We highlight the
need to probe multiple scales to assess and compare their relationships to cognition and behav-
ior. The principles of information coding should be identified within each scale and compared
across scales, complemented by empirical and computational understanding of global and
local scale interactions. While recent work has started to investigate multiple scales simulta-
neously, the technology afforded by each subfield unavoidably confines the spatial scale that is
10 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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Box 2. Range of spatiotemporal scales in neuroscience research

Lets do a fun exercise. Think about the most recent neuroscience paper you wrote or read. What spatial and temporal
scales of the brain were investigated? Feel free to check all scales that apply. Now think about the cognitive or behavioral
variable that was targeted in the paper. Do you think that the spatiotemporal scales you checked well capture the scope of
the behavioral construct? Do the given neural observations tile all possible explanatory scales? If not, what scales are
missing? What subfields in neuroscience (using which model species, recording/imaging techniques, and computational
analyses) could complement the missing pieces? We imagine an interactive repository where researchers can share their
chosen scales for each of their scientific papers, tagged with the associated cognitive process or behavior and techniques
used to collect the data.
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Figure I. Spatiotemporal scales in neuroscience research.
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probed. Therefore, we argue for the fostering of open science and cross-lab collaborations and
emphasize that findings from a specified scale are not guaranteed to generalize across scales.
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