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Narrative comprehension involves a constant interplay of the accumulation of incoming events and their integration into a
coherent structure. This study characterizes cognitive states during narrative comprehension and the network-level reconfigu-
ration occurring dynamically in the functional brain. We presented movie clips of temporally scrambled sequences to human
participants (male and female), eliciting fluctuations in the subjective feeling of comprehension. Comprehension occurred
when processing events that were highly causally related to the previous events, suggesting that comprehension entails the
integration of narratives into a causally coherent structure. The functional neuroimaging results demonstrated that the inte-
grated and efficient brain state emerged during the moments of narrative integration with the increased level of activation
and across-modular connections in the default mode network. Underlying brain states were synchronized across individuals
when comprehending novel narratives, with increased occurrences of the default mode network state, integrated with sensory
processing network, during narrative integration. A model based on time-resolved functional brain connectivity predicted
changing cognitive states related to comprehension that are general across narratives. Together, these results support adaptive
reconfiguration and interaction of the functional brain networks on causal integration of the narratives.
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The human brain can integrate temporally disconnected pieces of information into coherent narratives. However, the under-
lying cognitive and neural mechanisms of how the brain builds a narrative representation remain largely unknown. We
showed that comprehension occurs as the causally related events are integrated to form a coherent situational model. Using
fMRI, we revealed that the large-scale brain states and interaction between brain regions dynamically reconfigure as compre-
hension evolves, with the default mode network playing a central role during moments of narrative integration. Overall, the
study demonstrates that narrative comprehension occurs through a dynamic process of information accumulation and causal
integration, supported by the time-varying reconfiguration and brain network interaction. /
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Introduction

We make sense of our memory and others’ behavior by con-
stantly constructing narratives from an information stream that
unfolds over time. Comprehending a narrative is a process of
accumulating ongoing information, storing it in memory as a sit-
uational model, and simultaneously integrating it to construct a
coherent representation (Zwaan et al, 1995; Langston and
Trabasso, 1999; Polyn et al., 2009; Ranganath and Ritchey, 2012).
Forming a coherent representation of a narrative involves com-
prehending the causal structure of the events, including the
causal flow that links consecutive events or even a long-range
causal connection that exists between temporally discontiguous
events. Past research theorized that narrative comprehension
requires reinstating causally related past events and integrating
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them into a structured representation (Trabasso and Sperry,
1985; Graesser et al., 1994; Chang et al., 2021). However, empiri-
cal evidence regarding the integration of causal relations related
to the ongoing process of comprehension is lacking.

Recent neuroscientific literature suggests that narratives are
represented in activation patterns (Baldassano et al., 2017; Chen
et al., 2017) and functional connectivity (FC) (Simony et al,
20165 Aly et al., 2018; Ritchey and Cooper, 2020) of the distrib-
uted regions in the default mode network (DMN), based on
their capacity to integrate information over prolonged periods
(Hasson et al., 2008; Lerner et al., 2011; Honey et al, 2012).
However, traditional cognitive models theorize that the represen-
tation of narratives is updated by the interaction of the broader
networks of the whole brain, including regions involved in sen-
sory processing, memory, and cognitive control (Mar, 2004).
Prior research has indicated that large-scale brain networks alter-
nate between functionally segregated and integrated states
(Tononi et al., 1994; Shine et al., 2016), depending on the infor-
mation processing that is adaptively recruited at the moment
(Bullmore and Sporns, 2012; Zalesky et al., 2014). Studies
reported that brain activity, FC, and the occurrences and transi-
tions of the large-scale brain states were synchronized as partici-
pants watched the same movies, which were reliably coupled to
the narratives (Simony et al., 2016; Nastase et al., 2019; Betzel et
al., 2020; van der Meer et al, 2020). However, how these
synchronized reconfigurations in large-scale brain networks are
related to the ongoing process of narrative comprehension
remain unclear.

Previous work theorized external and internal modes of in-
formation processing in the brain, illustrating how the brain
undergoes adaptive state changes between the accumulation of
information from the external world, and its integration into in-
ternal thoughts (Dixon et al., 2014; Honey et al., 2018). Through
the adoption of this framework, this study characterizes narrative
comprehension as an exemplary naturalistic cognitive process
that entails transitions between dual modes of information proc-
essing (external and internal modes) that are accompanied by
corresponding state changes in large-scale functional networks
(segregated and integrated states). We hypothesize that the rela-
tive proportion of the two distinct processing modes would vary
depending on an individual’s degree of comprehension over
time. Specifically, we assume that, when a person experiences a
high degree of comprehension (i.e., when narratives are being
internally integrated to form a coherent situational model), an
integrated state of functional networks would emerge, with tight
connections between higher-order, transmodal brain networks
and sensory-specific, unimodal brain networks (Mesulam, 1998;
Margulies et al., 2016; Murphy et al, 2018). In contrast, when
individuals have a lesser degree of comprehension and thus fo-
cusing on processing external inputs, we predict that the func-
tional brain network would be biased toward a segregated state,
where each module operates independently.

Here, we characterized the cognitive processes involved in
narrative comprehension and examined the dynamic recon-
figuration of large-scale functional networks during comprehen-
sion. To track cognitive state changes, we presented three movie
clips of temporally scrambled sequences and collected behavioral
responses when individuals experienced the subjective feeling
of comprehension. Depending on participants’ responses on
moments of comprehension, we characterized a group-aggregate
behavior measure that represents fluctuating states of com-
prehension during scrambled movie watching. In a separate be-
havioral study, we measured causal relationships between
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pairwise moments of these scrambled movies and observed that
high-comprehension moments correspond to the moments
when past events are causally connected to the present event,
suggesting that comprehension entails the integration of narra-
tives into a causally coherent structure. In a functional neuroi-
maging study, using the group measure of comprehension, we
inferred the cognitive state dynamics of independent participants
as they watched the same scrambled movies inside the scanner.
We observed an increased level of BOLD activity in the DMN
regions during narrative integration, whereas the dorsal attention
network (DAN) increased its BOLD responses when compre-
hension was low. On a larger network scale, the functional brain
entered an integrated state during narrative integration, which
was modulated by the across-modular functional connections of
the DMN and frontoparietal control network (FPN). Using hid-
den Markov modeling (HMM) to characterize latent neural
states (Rabiner and Juang, 1986), we identified synchronized
neural state dynamics across individuals during novel movie
watching, with the DMN, integrated with the sensory processing
network, being the dominant state during high-comprehension
moments. We further demonstrated that evolving cognitive
states of comprehension that are robust across narratives can be
predicted from time-varying functional connections between
brain regions, but not from patterns of regional BOLD activity,
suggesting that the functional interaction of the distributed brain
regions is involved in narrative integration and comprehension.
By characterizing narrative comprehension as a dynamic process
of causal integration and relating it to changes in large-scale
brain activity and connectivity, our study provides the basis of
cognitive and neural states that underlie real-world information
processing.

Materials and Methods

Participants. An independent group of individuals participated in
two behavioral and one fMRI experiment (Behavioral Experiment 1: 20
participants per movie, with a total of 27 participants; 5 women, mean
age 22.6 = 2.1 years; Behavioral Experiment 2: 12 participants per movie,
with a total of 29 participants; 10 women, mean age 21.6 * 2.2 years;
fMRI experiment: 24 participants for Cops, 23 participants for The Kid,
and 20 participants for Mr. Bean, with a total of 30 participants; 10
women, mean age 24 = 2.1 years). The number of participants was deter-
mined based on previous fMRI studies that used similar naturalistic task
paradigms (Chen et al,, 2017; Aly et al,, 2018; Baldassano et al., 2018;
Finn et al,, 2018). A number of individuals participated in the experi-
ment multiple times watching different movie stimuli. None of the par-
ticipants had watched the movies before the experiment. All but one
participant were native Korean. All participants in the fMRI study were
right-handed, except one. Participants reported no history of visual,
hearing, or any form of neurologic impairment. The participants pro-
vided informed consent before taking part in the study and were mone-
tarily compensated. The study was approved by the Institutional Review
Board of Sungkyunkwan University.

Movie stimuli. Three movie clips: Cops (1922, Keaton & Cline), The
Kid (1921, Chaplin), and Mr. Bean: The Animated Series, Art Thief (sea-
son 2, episode 13; 2003, Fehrenbach), were used in both behavioral and
fMRI experiments. The three movies were selected as they comprised
rich narratives within ~10min duration and did not contain any form
of verbal conversations or narration (with an exception of background
music). Since narratives were delivered in the visual modality, the view-
ers had to actively infer the narratives through characters’ facial expres-
sions, body movements, and changes in the backgrounds. The movies
Cops and The Kid, which were black-and-white silent pictures from the
early 1900s, contained six and five clips, respectively, that projected a
dialogue on a full screen. These dialogues were translated into Korean
and projected in the same manner. All three movies contained
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Figure 1.  Experiment design. a, Behavioral study 1: Reports on the subjective moments of comprehension of the narratives. As participants watched a temporally scrambled movie (three
movie stimuli; N =20 per movie), they were instructed to press the “Aha” button whenever they experienced subjective comprehension of the plot (green), and the “Oops” button whenever
they realized that their previous understanding was incorrect (purple). The duration of each audiovisual movie was 10 min, and the duration of each scene was 36 = 4 s. b, Behavioral study
2: Event segmentation and causal relationship rating between events. In the first part of the study, an independent group of participants (N = 12 per movie) watched the movie in a temporally
scrambled sequence, followed by the original sequence. In the second part, they were instructed to mark perceived event boundaries to the scrambled movie (red dashed lines) and to annotate
each event with a short description. In the third part, they were instructed to rate the degree of a causal relationship between pairwise events they segmented themselves (bidirectional
arrows). A score of 1 was given if pairwise events were thought to be causally related, a score of 2 when pairwise events held critical causal importance within the narrative plots, and a score
of 0 was given otherwise. ¢, fMRI study. Another independent group of participants (N = 24, 23, and 20 per movie) participated in the fMRI experiment, where they watched the same movie
in an Initial Scrambled, Original, and Repeated Scrambled conditions in a single scan run. The conditions were separated by a 30 s fixated rest. No behavioral response was collected during the

san.

background music, which sets the emotional tone of the narratives and
characters. The movies were edited to an exact 10 min version where a
coherent narrative was complete within the given time. Each movie was
segmented into 16 (The Kid) or 17 (Cops and Mr. Bean) scenes and shuf-
fled in pseudorandom order, such that the fluctuations in the subjective
feeling of comprehension could be maximally induced. The scenes were
segmented mostly following the director’s cut (e.g., changes in back-
ground or camera angle), and the scene duration ranged between 32 and
40 s. To match the scene duration to the sampling rate of the fMRI
sequence (TR=1 s), we minimally adjusted the speed of the scenes by
rounding the duration to the nearest second. None of the participants
reported perceived differences in the speed of the scenes.

Behavioral Experiment 1: reports on the subjective moments of com-
prehension. We collected behavioral responses while participants were
watching a 10 min movie in a scrambled sequence (Scrambled movie
watching) (Fig. 1a). The stimuli were presented by the GStreamer library
(Open-Source, 2014), and the responses were recorded using MATLAB
(The MathWorks) and Psychtoolbox (Brainard, 1997; Pelli, 1997). The
experiment was conducted in a dimly lit room where the movies were
presented on a CRT monitor. Before the experiment, participants par-
ticipated in a practice session with a different movie clip, Oggy and the
Cockroaches: The Animated Series, Panic Room (season 4, episode 8;
2013, Jean-Marie). Participants pressed an “Aha” button when they
thought that they had comprehended the narrative, specifically when
they comprehended the temporal sequence or causal relationship of the
original narrative or when an interim comprehension of previously pre-
sented events occurred. On the other hand, they were instructed to press
an “Oops” button when they realized their prior comprehension was
incorrect. Participants were told that their reports of comprehension did
not necessarily have to be correct. Rather, they were instructed to report
whenever they experienced subjective feelings of “Aha” or “Oops,” at
moments of sudden insight or when their comprehension had changed.
As a post hoc verification of comprehension, participants completed a
comprehension quiz about the plots and contents of the narrative. The
data of 2 participants who scored exceptionally low were excluded from
the analyses.

As both “Aha” and “Oops” characterize moments when participants
experienced subjective feelings of comprehension, no distinction was
made between the two response types in the analyses. The moments of a
button press were resampled to a 1 s interval. The intersubject similarity
of the resampled button-press moments was calculated by averaging
Dice coefficients for all pairwise participants. A window of 4 s centered
around the time of a button press was considered as a button-press
moment (Baldassano et al.,, 2017). The number of overlapping button-
press moments between pairwise participants was divided by the mean
of the total button presses of the pairwise participants. Nonparametric
permutation tests were conducted on the Dice coefficients computed
from the same number of randomly shuffled button presses of every par-
ticipant, also using a 4 s window (one-tailed test, 10,000 iterations).

All participants’ button responses (sampled at 1 s) were convolved
with a canonical HRF to relate to the independent group of participants’
fMRI data. To represent a gradual change in cognitive states related to
narrative comprehension that is shared across individuals, we applied a
sliding-window analysis with a window size of 36 s and a step size of 1 s
to aggregate (i.e., summation) the convolved behavioral responses of all
participants. Since this results in a time duration that is 36 s deduced
from the initial duration (movie duration minus the sliding-window
size), we padded 18 s (half the size of a sliding window) of zeros at the
beginning and end and applied the same sliding-window analysis to gen-
erate a behavioral index that matches the movie duration. We initially
chose a window size of 36 s to match the average duration of each scene
segment in the scrambled movies; however, we replicated our results
with the window sizes of 24, 30, and 42 s. The HRF-convolved, sliding-
window-applied output time course represented group-aggregate con-
tinuous behavioral measures of comprehension for each narrative
stimulus.

We also generated binary behavioral measures by categorizing each
time step of the movie into moments when participants experienced a
generally high or low degree of comprehension. The top one-third of the
moments with the high number of aggregate button responses were la-
beled as the moments of “high comprehension” and the bottom one-
third were labeled as “low comprehension.” We discarded the middle
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one-third because of its susceptibility to individual variances in cognitive
states. With an assumption that cognitive states of comprehension are
not instantaneous but prolonged, the labeled moments were discarded if
they did not persist for at least 10 consecutive time points (10 s). The
number of discarded time points was small, which amounted to
6.02 £ 5.72% of the one-third splits of the total time points.

For a nonparametric permutation test, we conducted phase-random-
ization of the behavioral time course after HRF convolution. A sliding
window with the same parameters and zero paddings was applied to the
phase-randomized time courses.

Behavioral Experiment 2: rating causal relationship between narra-
tive events. We collected reports of a causal relationship between pair-
wise events of the scrambled movies. The stimuli presentation and
response recording were controlled with Adobe Premiere Pro CC
(Adobe Systems). Participants initially watched the movie in scrambled
and original orders. Then, they were asked to segment the scrambled
movie in terms of the events’ narrative contents, by marking perceived
event boundaries without limit on the total number (Zacks and Swallow,
2007; Baldassano et al., 2017) (Fig. 1b). The experiment was conducted
using the scrambled movie only. Participants freely swiped through the
movie on the video editor during the event segmentation, marking exact
moments in time at which they perceived event boundaries. The scene
boundaries created from temporal scrambling were marked as physical
event boundaries in the video editor before the experiment. Thus, the
scene segments from experimental manipulation were shared across all
participants, while additional perceived event segments differed across
participants. Next, participants were instructed to write a short descrip-
tion of each segmented event. Finally, using the descriptions of the
events, participants were asked to rate the degree of a causal relationship
between all possible pairwise events, on a scale of 0-2 (Fig. 1b). A pair of
events was rated with a score of 1 if one event was causally attributed to,
or explained by, the happening of another event. A pair was rated with a
score of 2 if a causal relationship between pairwise events played a major
role in developing the plot of the narratives. The pairwise events that
were not rated by the participants were automatically scored 0.
Participants performed the task at their own pace without a time limit.

The timing of the perceived event boundaries was rounded to a 1 s
sampling rate. The causal relationship score originally given to the pair-
wise events was assigned to the corresponding pairwise moments of the
narratives, considering the duration of participant-specific perceived
event. By summing all participants’ ratings, a causal relationship matrix
was constructed for each scrambled movie, which specified the degree of
a causal relationship between all pairwise moments of the movie. We
unscrambled the event sequence back to the original order to further vis-
ualize causal relationships in an original event sequence. Importantly,
the causal relationship score of each moment was computed by averag-
ing the past moments’ causal relationship scores with respect to the pres-
ent moment. A causal relationship score of the nearby past moments
that corresponded to the same scene (i.e., a scene of 36 *4 s duration
that was segmented in temporal scrambling) was not included in the
analysis. A high causal relationship score represents that an event is
highly causally related to the events that occurred in the past, suggesting
that the corresponding moment is important in the narrative context
and that the past events are more likely to be reinstated in memory and
subsequently integrated into ongoing narratives while processing the
event.

To relate the causal relationship to the group measure of narrative
comprehension, the same analysis steps were applied to the causal rela-
tionship time course (HRF convolution and sliding-window analysis).

Control analysis: separating the effect of semantic relationship from
the causal relationship of the narrative events. As a control analysis of
the causal relationship experiment, we measured the degree of semantic
relationship between all pairwise events of the scrambled movies.
Written annotations of the narrative contents were generated for every 2
s of the scrambled movies by four independent annotators (4 women,
mean age 24.5 = 1.3 years) with native-level English proficiency, includ-
ing the first author. The annotators had never watched the movies before
the annotations, except the first author. The example annotations from
previous work (Nishida and Nishimoto, 2018) were used to instruct the
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annotators. Specifically, the annotators were instructed to make detailed
descriptions every 2 s of the movie, including what is happening at the
moment, by whom, where, when, how, and why. Cops and The Kid were
annotated by four annotators and Mr. Bean was annotated by three
annotators.

We used latent semantic analysis (LSA) to represent annotated
sentences from the co-occurrence statistics of the words in the sen-
tence, given the total words that appeared in the movie annotation.
A pair of sentences with similar word distributions resulted in simi-
lar embedding vectors. The method uses singular value decomposi-
tion (100-dimensional embedding vector; sklearn.decomposition.
TruncatedSVD) (Landauer and Dumais, 1997) on the one-hot word
count matrix (number of sentences in annotation X total number of
unique words in the annotation), to characterize the semantics of
the sentences in the movie-specific embedding space. To further
examine the validity of our semantic quantifications and test the
robustness of our findings, we quantified semantic embedding vectors with
an alternative method, a universal sentence encoder (USE) (Cer et al,
2018). USE is a pretrained deep averaging network encoder in which each
annotated sentence is used as an input to the pretrained model that is pub-
licly available in Google’s Tensorflow-hub (512-dimensional embedding
vector). USE is different from LSA in that it quantifies annotated sentences
in a fixed, pretrained embedding space.

The semantic relationship between the pairwise moments (2 s) of the
movies was calculated by the cosine similarities between the sentence
embedding vectors. The semantic relationship score of each moment
was computed by averaging the past moments’ (of the different scenes)
semantic relationship to the present moment. Similarly, to relate the
semantic relationship of each moment to the group measure of narrative
comprehension, we convolved HRF and applied the same sliding-win-
dow analysis.

Control analysis: stimulus saliency. The visual salience was measured
for all video frames at a sampling rate of 1 s. The pixelwise intensity of
the frame was measured using SaliencyToolbox (Walther and Koch,
2006), and the intensities of every location were averaged to represent
framewise salience. The saliency measures of the frames that corre-
sponded to the high- and low-comprehension moments were compared
using a paired Wilcoxon signed-rank test.

fMRI experiment. Participants were scanned using a 3T scanner
(Magnetom Prisma; Siemens Healthineers) with a 64-channel head coil.
A session consisted of one anatomic run and one task-based functional
run. The anatomic images were acquired using a T1-weighted MPRAGE
pulse sequence (TR =2200 ms, TE = 2.44 ms, FOV =256 mm X 256 mm,
and 1 mm isotropic voxels). Functional images were acquired using a
T2*-weighted EPI sequence (TR=1000ms, TE=30ms, multiband
factor =3, FOV =240 mm x 240 mm, and 3 mm isotropic voxels, with
48 slices covering the whole brain). A single EPI run lasted for 31 min 20
s, which included 30 s of blank fixation periods in between the three
movie watching conditions (Initial Scrambled, Original, and Repeated
Scrambled), and 10 s of additional fixations at the start and end of the
run (Fig. 1¢). Only one movie stimulus was tested in a single session of
fMRL

Participants first watched the same scrambled movie as in the behav-
ioral studies (Initial Scrambled condition), and watched the movie in an
original sequence (Original condition), then watched the same scrambled
movie again presented in the same order (Repeated Scrambled condition).
We compared the Initial Scrambled condition to the Repeated Scrambled
condition in which participants were viewing the same stimulus but were
assumed to be engaged in a different cognitive state. During the Initial
Scrambled condition, we assumed that the participants would be actively
engaged in comprehending the scrambled narrative, such that the cognitive
states can be inferred from the group measure of comprehension that was
estimated from a behavioral study where independent participants watched
the same scrambled movies for the first time. In contrast, no comparable
fluctuation in comprehension was expected to occur during the Repeated
Scrambled condition as this was after participants had watched the same
movie in an original sequence (Original condition). Therefore, we hypothe-
sized that, if the different neural activity is observed depending on the
changes in comprehension in the Initial but not in the Repeated Scrambled
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condition, they were likely to be attributed to different cognitive states
driven by narrative comprehension, not by other stimulus-driven effects.
No explicit task was given to the participants to exclude possible task-
induced effects. Participants were instructed to attend to the movie at all
times and attempt to comprehend and infer the original temporal and
causal structures of the scrambled movie.

The visual stimulus was projected from a Propixx projector
(VPixx Technologies), with a resolution of 1920 x 1080 pixels and
a refresh rate of 60 Hz. The movies were projected onto the center
of the screen, with a 22.6° x 15.1° FOV. The background music
was delivered by MRI-compatible in-ear headphones (MR Confon;
Cambridge Research Systems).

Image preprocessing. Structural images were bias field-corrected and
spatially normalized to the MNI space. The first 10 images of the func-
tional data were discarded to allow the MR signal to achieve T1 equili-
bration. Functional images were motion-corrected using the six rigid-
body transformation parameters. After motion correction, there was no
difference in the framewise displacement (FD) (Power et al., 2012, 2014)
between the binary moments of high and low comprehension, in both
the Initial (high: FD=0.038 * 0.008, low: FD =0.039 £ 0.007; paired
Wilcoxon signed-rank tests, zes)=0.79, p=0.431, Cohen’s d =0.06) and
Repeated (high: FD = 0.041 = 0.006, low: FD = 0.041 * 0.006; z(ss) = 0.67,
p=0.504, Cohen’s d=0.06) Scrambled conditions. The functional
images were slice timing-corrected, intensity-normalized, and regis-
tered to MNI-aligned T1-weighted images. We applied the fMRIB’s
independent component analysis (ICA)-based X-noiseifier (FIX) to
automatically identify and remove noise components (Griffanti et
al., 2014, 2017; Salimi-Khorshidi et al., 2014). The BOLD time series
were linearly detrended and band pass filtered (0.009Hz <
f<0.125Hz) to remove low-frequency confounds and high-fre-
quency physiological noise. The data were spatially smoothed with a
Gaussian kernel of FWHM of 5 mm. All analyses were conducted in
the volumetric space, and the cortical surface of the MNT standard
template was reconstructed using Freesurfer (Fischl, 2012) for visu-
alization purposes.

GLM analysis. To ask whether there exists a systematic modula-
tion of BOLD activity in brain regions, we applied a GLM regres-
sion, using AFNI. Preprocessed functional brain images (N=67)
were used as dependent variables, which included scans with three
movie stimuli in the Initial Scrambled, Original, and Repeated
Scrambled conditions. The group-aggregate behavioral measures of
comprehension were used as regressors in the model, applied to the
moments during the Initial Scrambled and Repeated Scrambled
conditions. We also replicated the analyses with the binary indices
of high and low comprehension. The block timing of the Initial and
Repeated Scrambled conditions, and a linear drift were included as
nuisance regressors in the model. In a group-level analysis, we
selected clusters of voxels (cluster size =40) that were significantly
(false discovery rate [FDR]-corrected, ¢ <0.01) correlated with the
changes in comprehension during the Initial and Repeated
Scrambled conditions respectively.

Whole-brain parcellation. For FC analysis, we parcellated the cortical
and subcortical regions of the brain to extract BOLD time series from
the parcellated brain regions. Cortical regions were parcellated into 114
ROIs (Yeo et al,, 2015) based on a seven-network cortical parcellation
estimated from the resting-state functional data of 1000 adults (Yeo et
al., 2011). The seven canonical functional networks included visual
(VIS), somatosensory-motor (SM), DAN, ventral attention network
(VAN), limbic network, DMN, and FPN. Subcortical regions were
parcellated into eight ROIs, corresponding to the bilateral amygdala,
hippocampus, thalamus, and striatum, extracted from the Freesurfer seg-
mentation of the FSL MNI152 template brain (Yeo et al., 2015). The sub-
cortical ROIs were combined as a single, subcortical network in the
functional network analysis. The time series of the voxels within each
ROI were averaged, resulting in a time series matrix of functional scan
duration (1870 s) X region (122 ROIs). To replicate the results using dif-
ferent atlases, we used the Brainnetome atlas that parcellates the whole
brain into 246 ROIs (Fan et al., 2016). For a comparison between the
two parcellation schemes, we calculated the topological overlap between
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each Brainnetome atlas ROI and the eight predefined functional net-
works (Yeo et al., 2011), which was regarded as the probability of a spe-
cific Brainnetome atlas ROI being identified as part of each of the eight
functional networks. The network label with the highest probability was
assigned to each Brainnetome atlas ROL

Time-resolved FC. We hypothesized that the whole-brain FC pat-
terns would be systematically modulated depending on changes in cog-
nitive states related to narrative comprehension. To this end, we
extracted time-resolved FC to estimate dynamically changing interac-
tions of the pairwise functional brain regions of the 122 ROIs (Sakoglu
et al., 2010; Handwerker et al., 2012; Hutchison et al., 2013; Allen et al.,
2014; Leonardi and Van De Ville, 2015). We applied a tapered sliding-
window analysis, matching the hyperparameter selection of the behav-
ioral data analysis. The chosen window size fell within the range of
optimal window size suggested by previous research (Shirer et al.,
2012; Deng et al., 2016; Liégeois et al., 2016). A tapered window
was convolved with a Gaussian kernel of o = 3 s to give higher
weights to the center of the window (Allen et al., 2014; Barttfeld et
al., 2015; Preti et al., 2017). An L1 penalty was added to increase
the sparsity of the resulting correlation matrices, using the
Graphical Lasso (Friedman et al., 2008). The regularization param-
eter was fixed to A= 0.01 for the ROIs selected from the Yeo et al.
(2011) atlas and to A = 0.1 for the Brainnetome atlas ROI. The
regularized correlation matrices were Fisher’s r- to z-transformed.

Graph theoretical network analysis. Using sparse, weighted, and
undirected FC matrices, we conducted graph theoretical network
analyses, using the Brain Connectivity Toolbox (https://sites.google.
com/site/bctnet/) (Rubinov and Sporns, 2010). As a global network
measure, we calculated modularity by iteratively maximizing the
modular structures using the Louvain algorithm (Newman, 2004,
2006; Blondel et al., 2008; Fortunato, 2010) with a resolution param-
eter y = 1. Both the positive and negative edges were included, but a
reduced weight was given to the negative edges (Rubinov and
Sporns, 2011; Shine et al., 2016) as follows:
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Equation 1 indicates a time-resolved Louvain modularity algorithm
(Qr). wij- indicates the weights of the positive functional connections

between regions i and j within the range (0, 1), and w;; indicates the

weights of the negative functional connections between regions i and j
within the range (0, 1). v* indicates the sum of all positive or negative

*
f

connection weights within the graph, where v* equals Z;w i OMm,
indicates the module partitions between regions i and j, where
dpmum= 1 identifies that i and j lie within the same module, and

17
the strength of a connection divided by the total weight of the

+

0 pmm;= 0 identifies that i and j lie in different modules. e;; indicates

graph, where ¢ =

Further, we quantified global efficiency, after thresholding the matri-
ces by leaving only the positive edges (Rubinov and Sporns, 2010). The
global efficiency was measured as the average inverse shortest path
length between all pairs of regions in the network (Latora and
Marchiori, 2001) as follows:

B Zisjea(dy) ™! 1
gr — _ - —
N(N-1) NN-1) £

1 @
,_j

Equation 2 is the measure of global efficiency (Egr), where dj} indi-
cates the shortest path length between the regions i and j, and N indi-
cates the total number of regions in the graph.

As regional graph theoretical measures of the across- and within-
modular connections, we calculated the participation coefficient and
within-module degree z score, based on the time-resolved community
structure derived from the Louvain modularity algorithm (Guimera and
Nunes Amaral, 2005; Shine et al., 2016) as follows:
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Equations 3 and 4 show the time-resolved measure of participation
coefficient (PC;r) and within-module degree z score (WMDZ;r). In
Equation 3, PCjy ranges between 0 and 1. ks indicates the strength
of positive functional connections between region i and all other regions
at module S; at time T, and ;7 indicates the strength of positive func-
tional connections of region i to all other regions, regardless of module
assignment. Ny indicates the number of modules at time T, where the
modules are defined using the Louvain algorithm. The time-resolved
participation coefficient of a region approximates to 1 if the connections
are made with the regions of other modules. In Equation 4, k;r indicates
the strength of connections of region i to other regions that lie within
the same module S; at time T, and « g7 indicates the average of k over
all regions in the module §; at time T. o, indicates the SD of k in
module S; at time T.

The time-resolved network measures were related to the binary indi-
ces of group-aggregate measures of comprehension. For each partici-
pant’s ROI, the time-resolved network measures were averaged to
produce a single summary value representing high- and low-compre-
hension moments, respectively. With every ROI being assigned to one of
eight functional networks (Yeo et al.,, 2011), we averaged the summary
values of ROIs that corresponded to each functional network. The results
from all participants across the three movie stimuli were combined
(N=67), and paired Wilcoxon signed-rank tests were performed
between the summary network measures that corresponded to high-
and low-comprehension moments. The effect size was estimated
using a Cohen’s d. Statistical values from the regional network anal-
ysis were FDR-corrected for multiple comparisons across different
functional networks (Benjamini and Hochberg, 1995; Benjamini
and Yekutieli, 2001), and the interaction effect was tested with a
repeated-measures ANOVA.

FC between pairwise subregions of the DMN. We compared the FC
strengths between the pairwise regions of the DMN during high- and
low-comprehension moments. The ROIs indicated as part of the prede-
fined DMN (Yeo et al., 2011) were grouped into five regions: the medial
prefrontal cortex (mPFC), middle frontal gyrus (MFG), middle temporal
gyrus (MTG), angular gyrus (Ang), and precuneus together with the
posterior cingulate cortex (PreCu/PCC), based on their anatomic separa-
tions (Simony et al., 2016). The BOLD time series of the voxels corre-
sponding to each subregion of the DMN were averaged, and the time-
varying functional connections between the pairwise DMN regions were
computed by applying the same tapered sliding-window analysis to the
Fisher’s r- to z-transformed correlation matrices, without regularization.
Likewise, the average FC strengths during high- and low-comprehension
moments were computed per individual and compared at the group level
using paired Wilcoxon signed-rank tests (N =67), respectively, for the
Initial and Repeated Scrambled condition, and a repeated-measures
ANOVA was used to test for an interaction effect.

HMM latent state analysis. To characterize the dynamics of low-
dimensional, latent neural states that represent functional brain activity
during movie watching, an HMM was used, which probabilistically
infers latent states of the time series. We defined ROIs based on group-
level ICA (Beckmann et al., 2005), using FSL-MELODIC (http://www.
fmrib.ox.ac.uk/fsl/melodic/index.html). The fMRI data of all participants
in the three movie-watching conditions were concatenated. The inde-
pendent components (ICs) were automatically extracted; then the
authors qualitatively assessed for inclusion of noise ICs. If an IC (1) spa-
tially overlapped with white matter or CSF, (2) was derived from motion
artifacts, or (3) had a temporal frequency that lied outside of a signal
range (f> 0.125Hz), it was discarded as noise. The signal components
were further qualitatively validated from their spatial overlaps with the
well-known functional networks identified from the resting-state fMRI
data (Smith et al., 2009). This resulted in a total of 30 signal ICs.
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To characterize canonical brain states representative of movie watch-
ing, and to infer latent states from different moments of the fMRI scan
that do not overlap with our analysis of interest (i.e., Initial and
Repeated Scrambled conditions), the HMM was trained using the BOLD
time series extracted from the 30 ICs of the concatenated time series of
all participants’ Original conditions of three different movie datasets
(hmmlearn.hmm.GaussianHMM). We iteratively searched for the opti-
mal number of states (K), within a range of 2-8. K was determined based
on the model’s consistency (Vidaurre et al., 2018) and clustering per-
formance (Calinski and Harabasz, 1974; Gao et al., 2021). We first tested
the model consistency across iterations, where the same HMM training
and inference procedures were repeated 5 times using the same hyper-
parameters. The mean of the pairwise iterations’ similarity in latent
sequence (the proportion of same state occurrence over the entire time
steps) was calculated to assess the consistency of the model. In addi-
tion, we tested the model’s clustering performance to examine
whether the inferred states distinguish the latent clusters of the
observed IC time course. Specifically, the Calinski-Harabasz score,
or the variance ratio criterion (Calinski and Harabasz, 1974), cal-
culates the ratio between the within-cluster dispersion (cohesion
of the IC activation maps that were inferred as the same underlying
brain state) and the across-cluster dispersion (separation of the IC
activation maps that were assigned to the different brain states).
The Calinski-Harabasz score was measured per each participant’s
fMRI time course, which was averaged to represent the HMM clus-
tering performance per K. After K was determined, among five
iterations, we chose the one that had the highest log probability of
the inferred state sequence, given the observed IC time series.

To overcome the problem of local minima during the initialization
of the HMM inference, we initialized the HMM parameters using the
output of k-means clustering with the same number of states (K) as in
the HMM analysis (sklearn.cluster. KMeans). Expectation-maximization
(Dempster et al., 1977) of the forward-backward algorithm was used to
estimate the optimal model parameters: transition probability and emis-
sion probability. The log-likelihood of the observation was iteratively
estimated, conditioned on the model. The number of iterations with dif-
ferent centroid seeds was set to 500. We decided that the forward-back-
ward algorithm approached an asymptote when the gain in log-
likelihood reached 0.001 during the re-estimation process. No restraint
was given to the transition probability matrix so that the transitions
could occur to all possible states. We modeled the emission probabilities
using a mixture Gaussian density function, where the mean vector and
covariance matrix were produced from a mixture of 30 ICs for each
state. The mean activation vector was characterized as the weights given
to the activation of the 30 ICs, and the covariance matrix was character-
ized as the functional covariance between the pairwise ICs (Vidaurre et
al., 2017, 2018). We defined each inferred neural state as the weighted
sum of the extracted ICs with the mean activation vectors. To label each
neural state as a known functional network, we masked the whole brain
with eight predefined functional networks and compared the levels of
activation corresponding to each network. The latent state was labeled
using a functional network that showed the highest level of activation. If
two functional networks had comparable activation profiles, the state
was labeled using both networks (e.g., SM+ VIS). The covariance matrix
of each state consisted of the pairwise temporal covariance of the 30 ICs
during the emergence of a latent state within the fitted sequence.

To characterize the modular structure of the functional covariance
patterns of the inferred latent brain states, we applied the Louvain mod-
ularity algorithm to the latent states’ covariance matrices. The output
modules were largely grouped as (1) the DMN+FPN, (2) VIS, and (3)
SM, which were identified from the module’s probabilistic spatial corre-
spondence to the resting-state functional networks defined in previous
work (Smith et al., 2009).

The estimated transition and emission probabilities were applied to
decode the most probable sequence of the concatenated time series of all
participants during the Initial and Repeated Scrambled conditions, using
the Viterbi algorithm (Rezek and Roberts, 2005). The outcome of the
Viterbi algorithm is the probability of each latent state being the most
dominant state at a specific time point. We chose the state with the
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highest probability to be a latent state at a specific moment, thus discre-
tizing the latent sequence. Importantly, to ask whether a neural state was
dominantly associated with a certain cognitive state, we related the esti-
mated neural states to the binary indices of the group measure of com-
prehension. The fractional occupancy of each state was calculated
during the high- and low-comprehension moments per participant. We
conducted paired Wilcoxon signed-rank tests to compare fractional
occupancies during high and low comprehension per state, and a
repeated-measures ANOVA to test the interaction between Scrambled
condition and comprehension states. p values were FDR-corrected for
multiple comparisons across the number of states.

Across-participant neural synchrony in latent state dynamics.
Furthermore, we asked whether the inferred neural state dynamics
were synchronized across participants as they comprehended the
same scrambled movies. Specifically, we asked whether the degree
of synchrony differed between the Initial and Repeated Scrambled
conditions. To estimate the pairwise-participant similarity of the
inferred state sequence during the Initial and Repeated Scrambled
conditions, we calculated the proportion of the paired time points
identified with an identical latent state over the entire scan dura-
tion, per pairwise participants. The neural state similarity was
compared between the Initial and Repeated Scrambled conditions
using a paired Wilcoxon signed-rank test, and the effect size was
estimated using a Cohen’s d.

To replicate the findings of across-participant neural synchrony in
the Initial and Repeated Scrambled conditions, we conducted an inter-
subject correlation (ISC) analysis (Hasson et al., 2004; Nastase et al.,
2019) using 122 ROI parcellation (Yeo et al,, 2011). An ISC was com-
puted per ROI, by iteratively leaving out a single participant and estimat-
ing a Pearson’s correlation between its regional time course and the
average regional time course of the rest of the participants who watched
the same movie stimulus. The ISC values of 122 ROIs were summarized
by functional networks, by averaging the ISCs of the brain regions that
corresponded to each of the predefined functional network. The ISCs of
the Initial and Repeated Scrambled conditions (results from all three
movie stimuli, N=67) were compared for each functional network using
paired Wilcoxon signed-rank tests, and FDR-corrected for multiple
comparisons.

Dynamic predictive modeling. Dynamic predictive modeling was
conducted to predict a moment-to-moment group measure of compre-
hension using patterns of FC and patterns of regional BOLD responses.
We used a cross-validated, linear support vector regression (SVR) model
to predict the degree of comprehension at each time step, from a multi-
variate pattern of functional brain activity or connectivity at the correspond-
ing time step. The model was validated with a linear support vector
machine (SVM), which predicted the binary indices of high and low
comprehension.

The model was cross-validated across participants and movie stimuli
so that the model would not learn participant- or narrative-specific regu-
larities. Specifically, the model was trained on every time step of all but
one participant’s fMRI data who watched two of the three movie stimuli
and was tested on each time step of the held-out participant’s fMRI data
from a held-out movie stimulus. The mapping between multivariate brain
features and behavioral score at each time step was input to the model as an
independent instance. For the FC pattern-based prediction, the multivariate
features to the model were Fisher’s r- to z-transformed correlation matrices
calculated from pairwise regions of the 122 ROIs using tapered sliding win-
dows (window size=36 s, step size=1 s, o = 3 s, without regularization).
For the activation pattern-based prediction, the time courses of BOLD
responses from the 122 ROIs were used as features. The time course of each
feature was z-normalized per participant, to maintain within-feature tempo-
ral variance while removing across-participant and across-feature variances.
Feature selection was used to select functional connections between ROIs or
responses from an individual ROI that were consistently correlated with the
comprehension time courses. For the training sample in each cross-valida-
tion fold, the time course of each neural feature was correlated with the
comprehension measure (Pearson’s correlation). A feature was selected if
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the distribution of correlation coefficients of the training sample was signifi-
cantly different from zero (one-sample ¢t test, p < 0.01) (Shen et al,, 2017),
regardless of whether the average correlation was positive or negative.

The predicted behavioral time course was the group measure of com-
prehension, estimated from the behavioral experiment. Because we had
a single group measure of comprehension per movie stimulus, the same
behavioral measure was predicted by multiple individuals’ fMRI data
who watched the same movie. The behavioral measures were zero-
padded for activation pattern-based prediction, whereas non-zero-
padded measures were used for FC pattern-based prediction to match
the duration of the time-resolved FC matrices (scan duration minus the
sliding-window size).

The prediction performance of the SVR was calculated by the Pearson’s
correlation between the predicted and observed behavioral time course,
averaged across 67 cross-validation folds (Fisher’s r- to z-transformed). The
prediction performance of the SVM was the proportion of the predicted bi-
nary category (high vs low comprehension) being correct. Again, perform-
ance was calculated per cross-validation fold and averaged to represent
mean prediction performance. The significance was calculated using non-
parametric permutation tests, where the same model predicted phase-
randomized comprehension measures (iteration = 1000). The actual predic-
tion performance was compared with the null distribution using a one-
tailed test, p = (1 + number of null prediction performance > actual per-
formance)/(1 + number of permutations).

We asked which of the functional network pairs were selected above
the chance to be correlated with the group measure of narrative compre-
hension. For the Initial and Repeated Scrambled condition, respec-
tively, we extracted a set of functional connections that were consistently
selected to be correlated with the comprehension measures in every cross-
validation fold (one-sample ¢ test, p < 0.01) (Shen et al,, 2017). To character-
ize the selected functional connections in the predefined functional network
space, we computed the proportion of the number of selected functional
connections among the total possible number of ROI connections of the
pairwise functional networks. Then, we generated the size-matched random
networks (iteration = 10,000) and estimated the proportion of the selected
connections in the pairwise functional network matrix in the same fashion.
The significance was tested per functional network pair using a one-tailed,
nonparametric permutation test, and FDR-corrected for the number of
pairwise functional networks.

Results

Moments of comprehension during scrambled movie
watching are synchronized across individuals
To maximally induce fluctuations in comprehension during nar-
rative movie watching, we used three 10 min silent movies that
were segmented into multiple scenes (36 == 4 s per scene), then
were scrambled in their temporal order. The scrambled order was
the same for all participants per movie. To quantify changes in
comprehension as participants attempted to understand the
scrambled movies (N=20 per movie), they were asked to press a
button when they thought they had understood the narrative
(“Aha”), or when their previous feeling of comprehension turned
out to be incorrect (“Oops”). As the “Oops” responses incorporate
the psychological notion of “Aha” (Danek and Wiley, 2017), no
distinction was made between the two response types and were
summed in the analysis. The moments of button presses were
largely consistent across individuals who watched the same movies
(mean Dice coefficients=0.256, range of null distribution =
[0.169, 0.213]; 0.243, [0.157, 0.201]; 0.249, [0.162, 0.207] for three
movie stimuli, nonparametric permutation test with one-tailed
test, all p values < 0.001; Fig. 2a). The results indicate that partici-
pants experienced the subjective feeling of comprehension at simi-
lar moments.

Because the cognitive states related to narrative comprehen-
sion were synchronous across individuals, we generated a group-
aggregate measure of narrative comprehension to temporally
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Comprehension occurs at causally
important moments of the narratives
Theories proposed that comprehension
occurs by integrating relevant features of
the narratives and creating a coherent sit-
uational model (Graesser et al, 1994;
Wolfe et al., 2005). How does narrative
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integration occur, and what constitutes
a representation of narratives? We
hypothesize that comprehension occurs
when the incoming information is inte-
grated with the causally related past
events, thereby constructing a causally
coherent representation of narratives. To
test this account, we conducted an addi-
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relate to fMRI data collected from an independent pool of
participants as they comprehended the same movie stimuli
(Fig. 2b). The moments of button responses were convolved
with a canonical HRF and were aggregated using a sliding
window of 36 s, in steps of 1 s, in which the number of
responses of all participants was summed within each time
window. A window size of 36 s was chosen to match the aver-
age scene duration of the scrambled movies. We binarized
the moments based on the aggregated response frequency
into the moments of high or low comprehension. The top
one-third of the moments were categorized as moments of
high comprehension, and the bottom one-third were catego-
rized as moments of low comprehension (Fig. 2b). We dis-
carded the middle one-third because cognitive states during
those moments were subject to higher variability across par-
ticipants than the top and bottom thirds.

The group measure of comprehension in Figure 2b repre-
sents the degree to which a person is likely to experience a
subjective feeling of comprehension while watching a
scrambled movie. In the behavioral study, we assumed that
the cognitive states involved in narrative comprehension
would comprise a state of a sudden insight (the experience
of “Aha”), change in comprehension (that is represented
with, but not restricted to, “Oops” responses), or a gradual
increase in comprehension. To test our assumption that
participants’ general comprehension would increase as the
movie progresses, we conducted a linear trend analysis on
the group measure of comprehension. We observed signifi-
cant positive linear trends in all three movie stimuli (linear
regression model fit, f(s7,)=11.02, p <0.001, * = 0.175;
t(s72)=8.36, p<0.001, r* = 0.109; ts72 =564, p<0.001, r* =
0.053), supporting our assumption that participants’ comprehen-
sion gradually increased during movie watching. Collectively, the
results indicate that the participants experience comprehension at
similar moments of the narratives, and our group-level behavioral
measures represented fluctuating cognitive states involved with
comprehension.

Changes in comprehension during temporally scrambled movie watching. a, Behavioral responses of comprehend-
ing moments while watching an exemplar temporally scrambled movie (N = 20). Participants pressed “Aha” when they experi-
enced subjective feelings of comprehension (green) and “Oops” when they realized their previous comprehension was incorrect
(purple). b, A continuous and binary group-aggregate behavioral measure of narrative comprehension. All participants’
responses in a were HRF-convolved and aggregated by applying a sliding window. The top one-third of the moments with fre-
quent responses were defined as the moments of high comprehension, whereas the bottom one-third were defined as the
moments of low comprehension. Behavioral results using two other movie stimuli are shown in https://github.com/hyssong/

600 tional behavioral experiment using the
same scrambled movies (N=12 per
movie) that estimates the degree of causal
importance of every moment of the nar-
ratives. In the experiment, participants
first segmented the events by marking
the perceived event boundaries of the
scrambled movie, then rated the causal
relationship between every possible pair-
wise event on a scale from 0 to 2: 0 (no
causal relationship), 1 (shares a causal
relationship), and 2 (shares a causal rela-
tionship that is critical in developing the narrative). The
responses of all participants were summed to create moment-to-
moment, causal relationship matrices that indicate the degrees of
a causal relationship between the narrative events of every pair-
wise moment in time (Fig. 3a). The causal relationship matrix,
unscrambled into the original order (Fig. 3b), indicates that not
only the causal relationship between temporally consecutive
events but long-range causal chains between temporally discon-
tiguous events also exist. We calculated the causal relationship that
each moment has with the past moments by averaging the causal
ratings of all preceding time points that did not belong to the same
scene (a “scene” indicates a 36 * 4 s block of the movie segmented
for temporal scrambling), creating a causal relationship time course
per scrambled movie stimulus (Fig. 3c). We predicted that the
moments of high comprehension would correspond to moments
that are strongly causally related to past events. The group measure
of comprehension was correlated with the causal relationship time
courses of all three movies (Pearson’s r=0.722, r=0.440, r=10.320,
compared with the null distribution in which causal relationship
was correlated with 1000 phase-randomized comprehension meas-
ures, nonparametric one-tailed p < 0.001, p=0.024, and p =0.065,
respectively). Additionally, when comparing the causal relationship
measured at the binary moments of high and low comprehension,
we observed a significantly higher causal relationship with past
events during the high- compared with low-comprehension
moments (paired Wilcoxon signed-rank test; z;s7) = 11.40, Cohen’s
d=224; zqe5 =744, Cohen’s d=0.96; z;63=4.76, Cohen’s
d=0.55; all p values < 0.001 for the three movies). The results sug-
gest that individuals experience comprehension when perceiving
events that are strongly causally linked with the previous events;
that is, when an incoming event takes on an important role within
the narrative’s causal structure (Graesser et al., 1994; H. Lee and
Chen, 2021). This supports the hypothesis that comprehension
entails the integration of incoming events with the memory of the
causally related past events, to formulate a causally coherent repre-
sentation of the narrative.
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However, there is a possibility that the
semantic relationship between events, rather
than the causal relationship, may have
derived positive correlations with the com-
prehension measures. To test this alternative
account, we measured the semantic relation-
ship between pairwise moments of the mov-
ies using the pairwise similarities of the
sentence embedding vectors of movie anno-
tations. We used the written annotations gen-
erated by four native-level English speakers,
which gave detailed descriptions of every
moment (2 s) in the movies, including what c
was happening at that moment, by whom,
where, when, how, and why. We used LSA to
quantify semantics of narrative annotations
(Landauer and Dumais, 1997), which charac-
terizes movie-specific sentence embedding
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vectors based on the relative similarities of
the word occurrence frequencies of the anno-
tated sentence (for details, see Materials and
Methods). A semantic relationship matrix
was created for each movie by calculating the
mean cosine similarities between the pairwise
sentence embedding vectors that were
generated by multiple annotators. We also
validated our semantic quantification using
USE. Semantic relationship matrices gener-
ated using LSA and USE were highly compa-
rable for all three movies (Pearson’s r=0.762,
r=0.794, r=0.691 per movie, all p values <
0.0001), suggesting that the quantified
semantic relationship was robust to the choice of analysis
method.

A causal relationship matrix was positively correlated with a
semantic relationship matrix above the chance (Pearson’s
r=0.156, r=0.104, r=0.105, all p values < 0.001, compared with
the null distribution where semantic relationship matrices were
randomly shuffled, one-tailed test, 1000 iterations). The semantic
relationship time course was computed similar to the causal rela-
tionship time course, such that the degree of semantic relation-
ship of the past time points (except the time points that belong
to the same scene) to the present moment was averaged.
Changes in group-aggregate comprehension were positively cor-
related with the semantic relationship time courses for two
among three movies (Pearson’s r=0.468, p=0.026, r=0.105,
p=0.282, r=0.498, p=0.004, compared with the null distribu-
tion in which the semantic relationship was correlated with 1000
phase-randomized comprehension time courses, one-tailed test).
When comparing the semantic relationship between high- and
low-comprehension moments, we observed that high-comprehen-
sion moments had a significantly higher semantic relationship with
the past compared with the low-comprehension moments, again
for the two among three movie stimuli (g7 =8.71, p < 0.001,
Cohen’s d=1.16; z(165=0.77, p=0.443, Cohen’s d=0.16; z(163 =
7.08, p < 0.001, Cohen’s d = 0.96).

However, critically, for all three movies, the causal relation-
ship showed a significant correlation with the comprehension
measures after the effect of the semantic relationship was con-
trolled for (partial r=0.623, r=0.436, r=0.182, all p values <
0.001), whereas the semantic relationship could not consis-
tently explain the comprehension measures when the effect of
the causal relationship was controlled for (partial r = —0.036,
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The causal relationship between narrative events. a, Causal relationship matrix, indicating the degree of a
causal relationship between all pairwise moments of an exemplar scrambled movie (N = 12). Participants rated the
causal relationship of the pairwise perceived event segments of the scrambled movie on a scale from 0 to 2. All partici-
pants’ responses were summed to generate a single causal relationship matrix. b, Causal relationship matrix,
unscrambled according to the original movie sequence. Strong clustering around the diagonal indicates that the tempo-
rally contiguous moments in the original sequence tend to be causally linked. Pairwise events that are temporally distant
but highly causally related also existed, indicating the presence of key pairs of events that are critical in developing nar-
ratives. ¢, The time course of causal relationship to past events, which represents causal importance. For each time point
in a, we averaged its causal relationship with every past moment of the different scenes.

p=0.391, r=0.082, p=0.050, r=0.435, p < 0.001). The results
suggest that connecting the causal relationship between events
plays a critical role in comprehending narratives, and this is
not merely because of the semantic similarities between
events. These findings were replicated using USE; we observed
significant correlation between the causal relationship and
comprehension measures while controlling for the semantic
relationship (partial r=0.686, r=0.435, r=0.217, all p values <
0.001), whereas the result was not consistent across the movies
when we correlated the semantic relationship and comprehension
measures while controlling for the causal relationship (par-
tial r=0.041, p=0.322, r=0.126, p=0.002, r=0.326, p < 0.001).
Overall, the results imply that narrative integration occurs based
on the causal connections between events even after the semantic
connections are accounted for and that the events’ relative causal
importance influences moments in time when narratives are
integrated.

fMRI study during scrambled movie watching

A separate, independent group of participants underwent an
fMRI experiment, where they watched the same set of scrambled
movies inside a scanner (N=24, 23, 20 for three movies). In
addition to scrambled movie watching (Initial Scrambled condi-
tion), participants watched the same movie in an original order
(Original condition), then watched the scrambled movie again in
the same order of presentation (Repeated Scrambled condition).
We compared the Initial Scrambled to the Repeated Scrambled
condition in which participants viewed the same stimuli but
in different cognitive states. During the Initial Scrambled condi-
tion, we assumed that participants were actively engaged in com-
prehending the scrambled movies, which led to dynamic
fluctuations in comprehension. In contrast, no comparable
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b Repeated Scrambled

Modulation of BOLD activity during changes in narrative comprehension. Results of the GLM analysis using a continuous behavioral index of comprehension (results from all three

movie stimuli, N = 67). The voxelwise group-level statistics (t test) were thresholded with cluster size > 40 and ¢ << 0.01, with the thresholded t values indicated at the color bar. a, Regions
that show positive (orange) and negative (blue) correlations with comprehension time courses in the Initial Scrambled condition. When comprehension was high, responses in the DMN
increased, whereas responses in the DAN and visual sensory network decreased. b, Regions that show positive (orange) and negative (blue) correlations with comprehension time courses in
the Repeated Scrambled condition. FEF, Frontal eye fields; IPL, inferior parietal lobule; MTL, middle temporal lobule; Visual, visual cortex.

comprehension was expected in the Repeated Scrambled condi-
tion as it was after participants had already watched the original
narrative. Thus, if the neural activity differed depending on
changes in comprehension in the Initial but not in the Repeated
Scrambled condition, they were more likely to be driven by the
cognitive state differences related to narrative comprehension
than by the stimulus-related attributes. Furthermore, to exclude
possible task-induced effects, no explicit task was given during
fMRI, but participants were instructed to attend to the stimulus
at all times and try to infer the temporal and causal structures of
the original story.

Modulation of activity in the DMN and DAN during changes
in narrative comprehension

We first examined whether any of the regions’ BOLD activity
was modulated by the changes in comprehension. We used the
group-aggregate measures of comprehension (estimated in an in-
dependent behavioral study) as regressors in the GLM to fit vox-
elwise BOLD activity time series. Data of all participants in the
three movie scans were included for the group-level statistical
analysis to exclude stimulus-specific effects. Cognitive and neural
states related to narrative comprehension were assumed to be
common across different narratives and robust to the particular
choice of stimuli.

In the Initial Scrambled condition, BOLD responses in the
Ang, PreCu, mPFC, middle temporal lobule, and MFG, which
together comprise the DMN, showed a higher level of activity
when participants were likely to experience feelings of compre-
hension. In contrast, when comprehension was low, the frontal
eye fields and inferior parietal lobule, regions of the DAN, and
the visual sensory network, including the early and high-level
visual areas, showed increased BOLD responses (Fig. 4a). These
results suggest that the regions in the DMN are involved when
integrating narratives to form an internal causal representation.
In contrast, the regions in the DAN are involved when compre-
hension is low, which may suggest that the DAN is involved in
attending to incoming events when trying to collect information
that may later piece together as a coherent representation.
Critically, in the Repeated Scrambled condition, these functional
networks did not show systematic modulation of BOLD re-
sponses, except for the early visual areas, which was also found

in the Initial Scrambled condition to exhibit greater activation
during low-comprehension moments, and the right postcentral
gyrus (Fig. 4b). The results indicate that the significant modula-
tion of BOLD activity during the Initial Scrambled condition is
not driven by the intrinsic properties of the stimuli, but derived
from active cognitive state changes that occur during narrative
comprehension. These results were replicated when the third-
median-split binary indices of comprehension (high vs low) were
used as regressors. Additionally, to examine whether greater
BOLD activity in the visual areas during low comprehension
(that appeared both in the Initial and Repeated Scrambled condi-
tions) was a stimulus-related effect, we assessed the physical sali-
ence of the movie frames by calculating the pixelwise stimulus
intensities at every frame (1 s) of the movie. For all three movies,
salience was higher during low-comprehension moments com-
pared with high (paired Wilcoxon signed-rank tests, z(;57)=2.33,
p=0.020, Cohen’s d=0.37; ze5=4.23, p<<0.001, Cohen’s
d=0.51; z163=7.40, p<0.001, Cohen’s d=1.01 for each
movie), suggesting that activity differences observed in the visual
areas may be because of the coincidentally stronger stimulus
intensities during moments of low comprehension.

Reconfiguration of functional brain network into an
integrated and efficient state during moments of narrative
integration

We then examined whether the large-scale functional brain net-
work reconfigures its interaction and information processing
state as comprehension evolves. When comprehension is low, we
expected a segregated brain state, where each functional network
is engaged in its specialized function. However, when compre-
hension is high (i.e., when narratives are actively being integrated
into a causally coherent structure), we anticipated a tightly inte-
grated state that enables efficient communication across distinc-
tive functional systems (Sadaghiani et al., 2015; Shine et al,
2016). For network analysis, we parcellated the brain into 122
ROIs and grouped them into eight predefined functional net-
works (Yeo et al, 2011, 2015). To account for the dynamic
changes in FC in relation to cognitive state dynamics, we
extracted the BOLD time series from each ROI and computed
the time-resolved FC between pairwise regions during the Initial
Scrambled, Original, and Repeated Scrambled conditions,
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Dynamic reconfiguration of large-scale functional networks at moments of high and low comprehension. a, Schematic overview of the time-resolved FC analysis using a sliding

window. The BOLD time series was extracted from 122 ROIs (Yeo et al., 2011, 2015). Time-resolved FC matrices were constructed for each window across movie duration, and graph-theoretical
network measures were computed from each FC matrix. Network measures were categorized by their correspondence to the cognitive states of either high or low comprehension, averaged
within a participant, and were compared at group level. The analyses were conducted on all participants using three movie stimuli (N = 67). b, Global network reconfiguration corresponding
to cognitive state differences. Modularity and global efficiency representing high- and low-comprehension moments were compared, for both the Initial and Repeated Scrambled conditions.
Error bars indicate =1 SEM. ¢, Differences in participation coefficients (a regional network measure of across-modular connections) between high- and low-comprehension moments, for the
Initial (left) and Repeated (right) Scrambled conditions. The difference in participation coefficients was calculated per ROI and averaged across participants. Positive values (red) indicate that
the regions exhibited higher participation coefficients during high-comprehension moments, whereas negative values (blue) indicate that the regions exhibited higher participation coefficients
during low comprehension overall. The figure is visualized using BrainNet Viewer (Xia et al.,, 2013). d, Difference in the FC strengths of the pairwise subregions of the DMN between high- and
low-comprehension moments, for the Initial (left) and Repeated (right) Scrambled conditions. Colors represent FC strength differences, averaged across participants. The FC strength of high-
compared with low-comprehension moments was compared per regional pairs. Square contour represents pairwise DMN subregions that showed significant interaction effects between

Scrambled conditions and comprehension states. The significance was FDR-corrected for the number of regional pairs.

respectively (Fig. 5a). Graph theoretical measures were computed in
a time-resolved manner to capture changes in large-scale
functional network structures (Rubinov and Sporns, 2010).
To examine the degree of functional segregation, we meas-
ured modularity, which captures the degree to which func-
tionally specialized regions of the brain are clustered in a
modular structure (Bassett et al.,, 2013). As an indicator
for functional integration, we measured global efficiency
that represents integrative information processing across
remote regions of the brain (Achard and Bullmore, 2007;
Bullmore and Sporns, 2009, 2012). With the binary group
measure of high and low comprehension, we were able to
extract participant-specific summary measures of modular-
ity and global efficiency during the two distinct cognitive
states. The graph-theoretical measures were compared
between high- and low-comprehension moments, respec-
tively for the Initial and Repeated Scrambled conditions.

In the Initial Scrambled condition, modularity decreased
when comprehension was high (paired Wilcoxon signed-rank
test, z(s6) = 2.32, p =0.020, Cohen’s d = 0.25), suggesting that tight
interaction across functional modules arises when information is
being integrated into coherent narratives (Fig. 5b). In contrast,
there was no difference in modularity between high- and low-

comprehension moments during the Repeated Scrambled
condition (z( ) =0.58, p=0.561, Cohen’s d=0.06). A signifi-
cant interaction was found between the Scrambled conditions
(Initial and Repeated) and comprehension states (high and
low; F(166)=6.98, p=0.010), although no main effect was
observed (main effect of the Scrambled conditions, p =0.334,
comprehension states, p=0.146). Similarly, global efficiency
was higher during moments of high comprehension compared
with low (zs =3.67, p<<0.001, Cohen’s d=0.33). There
was no difference in global efficiency during the Repeated
Scrambled condition (z(s)=0.57, p = 0.566, Cohen’s d = 0.04),
and the interaction was significant (F(; g6 =10.62, p=0.002).
Notably, a significant main effect of the Scrambled conditions
was found (F(; 66)=26.27, p <0.001), with a higher efficiency
when the same scrambled movie was watched repeatedly.
These results suggest that the efficiency of information proc-
essing increases when a coherent situational model is already
represented in the brain. The results were reproduced when
different sliding-window sizes or a different cortical parcella-
tion scheme was used (for replication results, see https://
github.com/hyssong/comprehension). Overall, these results
indicate that the brain enters a functionally integrated and ef-
ficient state that ensures more efficient information transfer
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across functional modules when integrating narratives to a
coherent representation.

Changes in across- and within-network functional
connections during narrative comprehension

Along with the global reconfiguration, the time-resolved regional
network measures between the high- and low-comprehension
moments were compared. For all ROIs, the participation coeffi-
cients and within-modular degree z scores were measured, which
represent the degree of the across-modular and within-modular
connections (Guimera and Nunes Amaral, 2005; Shine et al.,
2016). A higher participation coefficient indicates that a region is
functionally connected to the regions of other functional net-
works in a distributed manner, whereas a higher within-modular
degree z score indicates that a region is mainly associated with
the regions that lie within the same module (Guimera and Nunes
Amaral, 2005). The network measures were computed per ROI
and were averaged within a respective predefined functional net-
work (Yeo et al,, 2011). During the Initial Scrambled condition,
all functional networks showed higher participation coefficients
when comprehension was high compared with low. In particular,
the FPN (z(66) = 4.24, FDR p < 0.001, Cohen’s d = 0.43, corrected
for multiple comparisons across functional networks) and
the DMN (z(6)= 2.87, FDR p=0.017, Cohen’s d=0.31)
showed significantly higher participation coefficients when
comprehension was high compared with low (Fig. 5¢).
There was a significant interaction between the Scrambled
conditions and comprehension states for both networks
(FPN:  F(166=11.93, DMN: F¢=12.29; both p
values < 0.001; for the full results of all functional networks,
see https://github.com/hyssong/comprehension). During
the Repeated Scrambled condition, no functional network
showed similar patterns of modulation in their across-mod-
ular FC, except for a reversed pattern of higher participa-
tion coefficients during low comprehension in the visual
and subcortical networks (z(s)=3.35, FDR p=0.005,
Cohen’s d=0.27, and z(e) = 3.21, FDR p=0.005, Cohen’s
d=0.29, respectively). The within-modular connections,
quantified by within-modular degree z scores, did not differ
across the high- and low-comprehension moments for any
of the functional networks, during both the Initial and
Repeated Scrambled conditions (all FDR p values > 0.6).
These results suggest that the global reconfiguration is
largely driven by the increased across-modular functional
connections of the FPN and DMN, but less so by the con-
nections within functional modules.

The null results with the within-modular degree z scores, par-
ticularly for the regions of the DMN, were not consistent with
prior work that suggested that dynamic changes in connections
between DMN subregions reflect higher-order information proc-
essing, such as narrative integration (Simony et al., 2016; Ritchey
and Cooper, 2020). With the recent studies reporting disparate
functional roles of the subregions of the DMN (Andrews-Hanna
et al, 2014; Braga and Buckner, 2017; Gordon et al, 2020;
Ritchey and Cooper, 2020), we hypothesized that the within-net-
work connections of the DMN may have been modulated differ-
ently for each subregional connection, which is not evident when
computing within-modular degree z scores of the entire network.
To examine this question, we computed time-resolved FC matri-
ces between the pairwise BOLD time series of the five canonical
subregions of the DMN (i.e, mPFC, MFG, MTG, Ang, and
PreCu/PCC) and compared the mean FC strength representing
the high- and low-comprehension moments (Fig. 5d). During
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the Initial Scrambled condition, we observed increased FC
between Ang and MTG (z(s) =4.09, p < 0.001, Cohen’s d =0.39;
interaction, F(;e6=11.81, FDR p=0.007), PreCu/PCC and
MEFG (z(66) = 3.30, FDR p=0.003, Cohen’s d=0.45; F(, ¢4 = 6.57,
FDR p=0.033), and PreCu/PCC and MTG (z()=3.16, FDR
p=0.004, Cohen’s d=0.44; F(j¢5=10.75, FDR p=0.007). In
contrast, decreased FC was observed between MFG and mPFC
(Z66) = 212, FDR p=0.048, Cohen’s d = 0.24; F; ¢, = 10.22, FDR
p=0.007), but not during the Repeated Scrambled condition.
Other pairwise DMN subregions exhibited no significant interac-
tion effect between Scrambled conditions and comprehension
states (all FDR p values > 0.05). The coexistence of both signifi-
cant increase and decrease in FC within the DMN supports our
hypothesis that the subregional connections are modulated dif-
ferently during narrative comprehension. The results suggest
that the subregional connections of the DMN may take on differ-
ent functional roles during narrative comprehension, which
remains to be further studied in future research.

Brain state characterized by the integrated DMN and sensory
processing network occurs at moments of narrative
integration

We investigated whether large-scale neural state dynamics track
changes in cognitive states involved with narrative comprehen-
sion. To infer the dynamics of low-dimensional latent states in
an unsupervised data-driven manner, we applied the HMM,
which assumes that the observed sequence of brain activity is
probabilistically conditioned on the sequence of discrete latent
states (Baker et al., 2014; Vidaurre et al., 2017, 2018; Quinn et al,,
2018). To characterize the observed sequence of neural activity,
we first conducted a group-level ICA (Beckmann et al., 2005)
from all participants’ concatenated fMRI responses of all three
conditions across three movies. Thirty ICs were identified to be
signal components that were involved during movie watching.
The discrete latent neural states were derived from patterns of
activation and functional covariance of the 30 ICs, as we trained
the HMM on the data from the Original condition. When we set
the number of latent states to 4, based on the model’s consistency
and clustering performance measures (for details, see Materials
and Methods; Fig. 6a), the extracted states were: SM+VIS,
DAN, Integrated DMN+VIS, and Segregated DMN+ VIS (Fig.
6¢). Each state was labeled as one or the combination of
eight functional networks by its inferred regional activation pat-
terns. Notably, the two DMN+VIS states (i.e., Integrated and
Segregated DMN+ VIS) showed similar activation patterns, yet
their functional covariance significantly differed such that one
had higher across-modular FC (one-sample Wilcoxon signed-
rank test on the differences in functional covariance of all edges
corresponding to the module pairs, FDR-corrected for module
pairs; across DMN+FPN and VIS modules: z(;09)=4.78, FDR
p<0.001; across DMN-+FPN and SM modules: zg)=7.03,
FDR p < 0.001; however, across VIS and SM modules showed
opposite pattern: z(9gy=2.14, FDR p=0.033) and lower within-
modular FC than the other (within DMN-+FPN module:
Z(99) = 2.81, FDR p = 0.006; within VIS module: z(;,0y=7.03, FDR
p < 0.001; within SM module: zgp)=7.73, FDR p < 0.001). The
one with higher across-modular but lower within-modular FC
was termed the “Integrated” DMN+ VIS state, and the other the
“Segregated” DMN+VIS state. We applied the derived states
from the Original movie watching condition to infer the latent
state dynamics in the Initial and Repeated Scrambled conditions.
We verified that the inferred latent states were dynamic in na-
ture. The maximal fractional occupancy, the highest proportion
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The fractional occupancy of the highest emerging state was calculated as per the participant’s inferred sequence. ¢, Activation patterns and functional covariance of the four latent states, identi-
fied by training the HMM with the Original condition. The SM+VIS, DAN, Segregated DMN+VIS, and Integrated DMN VIS were labeled based on their spatial activation patters correspond-
ing to the eight predefined functional networks. Right, The covariance matrix shows the difference between the covariance matrices of the Integrated DMN+VIS and Segregated DMN+VIS. d,
State occupancy and transition dynamics of a representative participant during exemplar moments of the Initial Scrambled condition. Occurrences of the states were probabilistically inferred at
each time point (Vidaurre et al., 2017, 2018). Discrete latent states, assigned from the state with the highest probability of occurrence at respective time points, were related to the binary
group measure of comprehension. e, The average fractional occupancy of the four latent states during the moments of high and low comprehension, in the Initial and Repeated Scrambled conditions
(results from all three movie stimuli, N = 67). Highlighted background between the colored bars represents significant differences in fractional occupancies, FDR-corrected for the number of states.

of a particular state’s occurrence across all time points per partic-
ipant, was <50% for most of the participants (one-sample
Wilcoxon signed-rank test, p < 0.001; Fig. 6b), indicating that
the transitions occurred from one latent state to more than one
other state (Vidaurre et al., 2018).

Next, we examined whether the fractional occupancy of each
neural state was modulated as the cognitive states traversed
between different states of comprehension. Figure 6d illustrates
the dynamics of the state occurrence probabilities of an exemplar
participant, which is mapped in time to the binary group
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measure of comprehension. In the Initial Scrambled condition,
the SM+ VIS had a higher occupancy during low-comprehen-
sion moments (paired Wilcoxon signed-rank test, z( e =3.32,
FDR p=0.002, Cohen’s d=0.39), whereas the Integrated
DMN+ VIS had a higher occupancy during high-comprehension
moments (e =3.81, FDR p <0.001, Cohen’s d=0.44) (Fig.
6e). None of the brain states differed in fractional occupancy
across the high- and low-comprehension moments in the
Repeated Scrambled condition (all FDR p values>0.4).
Significant interaction effects between Scrambled conditions and
comprehension states were observed for both the fractional occu-
pancies of the SM+VIS state (F( =645 p=0.013) and
Integrated DMN+VIS state (F(66)=16.83, p <0.001). Results
were consistent when six latent states instead of four were used
in the HMM. In the Initial Scrambled condition, the
Integrated DMN+VIS had a higher fractional occupancy
during high comprehension (zs)=3.41, FDR p=0.004,
Cohen’s d=0.51), and the visual sensory network state had
a higher fractional occupancy during low comprehension
(z(66y=3.06, FDR p=0.007, Cohen’s d=0.30), whereas in
the Repeated Scrambled condition, we observed a signifi-
cant decrease in the fractional occupancy of the Segregated
DMN+VIS (z(6) =3.30, FDR p=0.006, Cohen’s d=0.47)
during high-comprehension moments compared with low.
Interaction effects between Scrambled conditions and com-
prehension states were significant for the three states
(Integrated DMN+VIS: F(; 66y = 15.81, Visual: F(; 66) = 6.41,
Segregated DMN+VIS: F(; 66)= 4.48, all p values <0.05),
but not for others (all p values > 0.12). These results imply
that the DMN, in tight connection with sensory networks,
is highly involved when the narratives are actively being
integrated. In contrast, when one focuses on accumulating
information from external inputs with a lesser degree of
comprehension, the low-level sensory and motor networks
take over its role.

Synchronization of underlying brain state dynamics across
individuals during novel movie watching

Furthermore, we investigated whether the latent neural state
dynamics were synchronized across individuals as they
comprehended the same narratives. Figure 7a illustrates the
inferred neural state sequence of the fMRI participants as
they watched an exemplar movie stimulus in the Initial and
Repeated Scrambled conditions. The proportion of the
moments when the inferred state was identical was

calculated for all pairwise participants per movie. The neu-
ral state dynamics were more synchronized across partici-
pants in the Initial than in the Repeated Scrambled
condition (paired Wilcoxon signed-rank test, z(;;5)=18.08,
p<0.001, Cohen’s d=1.04; Fig. 7b), which was replicated
when six latent states were used (z(715)=19.29, p <0.001,
Cohen’s d=1.23). The higher neural synchrony during
novel compared with repeated movie watching was repli-
cated with an ISC analysis, an ROI-based measure of
across-subject neural synchrony (Hasson et al., 2004;
Nastase et al., 2019). All eight functional networks exhibited
a lesser degree of ISC during repeated movie watching com-
pared with participants’ first time watching the same movies
(paired Wilcoxon signed-rank test between the ISCs of the
Initial and Repeated Scrambled conditions; all FDR p values
< 0.001, corrected for the number of functional networks).
These results suggest that individuals share similar neural dy-
namics when actively trying to comprehend novel narratives,
yet the synchrony decreases when the narratives are no longer
novel. The idiosyncratic neural states during repeated movie
watching imply that cognitive states may vary across individu-
als when an active comprehension is no longer required.

Functional brain connectivity predicts evolving cognitive
states of comprehension across narratives

Last, we examined whether changes in comprehension, a higher-
order cognition that is shared across narratives, can be predicted
from patterns of functional brain signatures. Compared with a
static predictive model, where a single pattern of brain signature
of an individual is related to that person’s behavioral score or
phenotypic trait (Finn et al., 2015; Rosenberg et al., 2016; Shen et
al., 2017), we conducted dynamic predictive modeling, which
maps time-resolved brain patterns to the time-resolved behav-
ioral measures (Fig. 8a). Dynamically changing brain patterns
were captured by the sliding-window-applied FC matrices
(i.e., FC pattern-based prediction), or BOLD activation time
series of the 122 ROIs (i.e., activation pattern-based predic-
tion). Dynamically changing cognitive states were represented
by the group-aggregate measure of comprehension, which
was collected from behavioral reports in a separate study.
The brain features are different for every fMRI participant,
whereas the group behavioral measure is shared across partici-
pants who watched the same movie (Fig. 8a). To exclude
across-participant variance while retaining the temporal var-
iance within an individual, we normalized the time course,
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respectively, for each brain feature of
each participant. We trained a linear
SVR model to predict the moment-to-
moment degree of comprehension,
given the multivariate neural features
at the corresponding time point. To
isolate cognitive states associated with
general narrative comprehension and
exclude narrative-specific, stimulus-
driven properties, we adopted across-
movie, leave-one-subject-out cross-
validation where we trained the
model on the data collected from two
of the three movies on all participants
except one and tested on a held-out
participant who watched the held-out
movie (Fig. 8a). An additional feature
selection procedure was used, such
that the features that were correlated
with the group measure of compre-
hension, consistent across the train-
ing participants (one-sampled t test
on the correlation coefficients,
p <0.01), were selected in each cross-
validation fold (Shen et al., 2017).
The results of the predictive modeling
are illustrated in Figure 8b. When the FC
patterns were used as features, the cross-
validated model predicted changes in
narrative comprehension above chance
during the Initial Scrambled (r=0.133,
one-tailed p=0.003, nonparametric per-
mutation test with phase-randomized
behavioral measures, iteration = 1000),
but not during the Repeated Scrambled
condition (r = —0.069, p=0.950). The
difference in cross-validation accuracies
between the two Scrambled conditions
was significant (paired Wilcoxon signed-
rank test, zg6) =4.57, p <0.001, Cohen’s
d=1.02). However, when the BOLD acti-
vation patterns were used as features, we
observed no significant prediction per-
formance in both the Initial (r=0.044,
p=0.184) and Repeated (r=0.054, p =
0.113) Scrambled conditions, with no
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Figure 8. Prediction of the moment-to-moment cognitive states of narrative comprehension from brain patters. a,

Schematic illustrations of dynamic predictive modeling. The model leams the relationship between time-resolved brain patterns
(i.e., FC patterns or BOLD activation patterns) and time-resolved cognitive states (i.e., a group-aggregate behavioral measure of
comprehension). The brain patterns and a behavioral estimate at every time point from all training participants are treated as
independent observations during model training. Feature selection is conducted such that the brain patterns that are signifi-
cantly correlated with behavioral measures are selected as model features. The trained model is then applied to a held-out
individual to predict evolving cognitive states from selected brain features. Prediction accuracy is computed as the Pearson’s
correlation between the predicted (green line) and observed (black line) behavioral time courses, averaged across cross-valida-
tion folds. A cross-validated model is applied to a held-out participant’s held-out movie watching scan, from a model trained
from the rest of the participants’ movie watching scans of different movie stimuli. b, Linear SVR model prediction accuracy
(results from all three movie stimuli, N =67). FC pattern-based and activation pattern-based predictions were conducted for
the Initial and Repeated Scrambled conditions. Sixty-seven cross-validated prediction accuracies (gray dots) were averaged, and
the mean accuracy (black lines) was compared with the null distribution (gray violin plots) in which the same model predicted
phase-randomized group measures of comprehension (one-tailed test). ¢, The proportions of functional connections that were
selected in every cross-validation fold during the Initial Scrambled condition, grouped by predefined functional networks. The
triangular matrices represent the proportion of functional connections that were positively (left) or negatively (right) correlated
with comprehension measures. The functional network pairs of which the proportion of selections was significantly higher than
chance are indicated with asterisks (one-tailed test, FDR-corrected for the number of network pairs). LIMB, Limbic network;
SUBC, subcortical network.

To examine which of the functional connections in the FC

significant difference in cross-validation accuracies (z(s)=0.77,
p=0439, Cohen’s d=0.10). A repeated-measures ANOVA
showed a significant interaction effect between the Scrambled con-
ditions and neural feature types (F ) =26.26, p<<0.001). The
results were replicated using a linear SVM that predicted binary
indices of high and low comprehension (FC pattern-based predic-
tion: Initial, 56.01%, p=0.010, Repeated, 47.28%, p = 0.916,
Z(66)=4.01, p<0.001, Cohen’s d=0.85; Activation pattern-based
prediction: Initial, 51.36%, p =0.320, Repeated, 52.63%, p =0.129,
Z(66) = 1.30, p=0.195, Cohen’s d = 0.22; interaction, F(; ¢5) = 19.91,
p<<0.001). The prediction performance was also not significant
when the BOLD activation patterns of the entire ROIs were used
as features, without feature selection (Initial Scrambled: r=0.050,
p=0.116, Repeated Scrambled: r=0.040, p=0.139; z) = 0.306,
p=0.745, Cohen’s d=0.10). The results suggest that the cognitive
states of comprehension that are generalizable across narratives
are robustly predicted by the functional interaction between brain
regions, as opposed to the regional activation patterns.

pattern-based analysis contributed to predicting cognitive states,
we extracted functional connections that were consistently
selected in every cross-validation fold (Fig. 8c). Among the
selected connections, 113 functional connections were positively
correlated, and 79 functional connections were negatively corre-
lated with the comprehension measures in the Initial Scrambled
condition, whereas only four functional connections were posi-
tively correlated and none of the functional connections was neg-
atively correlated with the comprehension measures in the
Repeated Scrambled condition. Next, we assigned these consis-
tently selected functional connections to the predefined func-
tional networks (Yeo et al,, 2011) and asked whether any of the
functional network pairs were selected above chance. The
connections between the DAN and VAN, DAN and DMN, and
the within-network connections of the FPN and the DMN were
selected to be positively correlated with the comprehension
measures above chance, in which the null distribution was
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computed from the size-matched random networks (all FDR p
values < 0.01, one-tailed test, iteration = 10,000, corrected for the
number of functional network pairs). The connections between
the DAN and limbic network, DAN and subcortical network,
and FPN and VAN were selected to be negatively correlated with
the comprehension measures during the Initial Scrambled condi-
tion (all FDR p values < 0.05). None of the functional network
pairs were consistently selected during the Repeated Scrambled
condition. The results support our hypothesis that the cognitive
states related to narrative comprehension are not restricted to an
operation of a particular functional system; rather, they are
driven by the dynamic interactions of distributed networks in
the brain, in particular the DAN, FPN, and the DMN.

Discussion

Narrative comprehension entails the constant accumulation of
information and integration into a causally coherent situational
model. We identified the dynamic fluctuation of these cognitive
states from participants’ behavioral reports of comprehension
moments as they watched temporally scrambled movies (Fig. 2).
By assessing the causal relationships of the events, we demon-
strated that comprehension occurred when an incoming event
was strongly causally related to past events, implicating the asso-
ciation of memory reinstatement and narrative integration (Fig.
3). Using fMRI, we showed how large-scale functional brain net-
works adaptively reconfigure their activity and connective states
when individuals engage in comprehending narratives. The sys-
tematic modulation of BOLD responses was observed, with
higher DMN activity during high comprehension and DAN ac-
tivity during low comprehension (Fig. 4). Additionally, network-
level reconfiguration was aligned to cognitive state changes, such
that the functionally integrated and efficient network state
occurred during high comprehension, supported by the across-
modular connections of the DMN and FPN (Fig. 5). Using a
latent state analysis, we showed that the DMN, in tight connec-
tion to the sensory processing network, becomes dominant dur-
ing narrative integration (Fig. 6). The underlying brain states
were synchronized across participants when comprehending
novel narratives (Fig. 7). We further demonstrated that the
evolving comprehension of unseen individuals watching unseen
narratives can be predicted by time-resolved functional brain
connectivity patterns, but not by regional activation patterns
(Fig. 8).

Collectively, the study suggests that narrative comprehension
can be characterized by adaptive switches in the dominant infor-
mation processing modes, transitioning between the accumula-
tion of information when comprehension is low (external mode)
and an internal integration into a structured narrative represen-
tation when comprehension is high (internal mode) (Dixon et
al,, 2014; Honey et al., 2018). Although narrative comprehension
entails the constant accumulation of incoming events and simul-
taneous integration of these events into the situational model,
our study implies that proportional dominance of information
processing modes differs depending on the degree to which nar-
ratives are represented in a causally coherent manner. Our be-
havioral results suggest that the mode switches are driven by the
causal dependencies between narrative events, which are con-
nected across time by long-term memory. Our fMRI results also
illustrate that alternations between segregated and integrated
states of the functional brain network, which were previously
suggested to reflect the efficiency and flexibility of the brain in
the context of controlled tasks or rest (Bullmore and Sporns,
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2012; Zalesky et al., 2014; Gonzalez-Castillo et al., 2015; Shine et
al., 2016), are further associated with the externally and internally
directed modes of information processing during naturalistic
cognition.

During high narrative comprehension, we observed function-
ally integrated and efficient brain states, with a prominent role of
the DMN. In particular, modulation of within- and across-mod-
ular functional connections of the DMN drove large-scale recon-
figuration of the functional networks (Fig. 5), and a latent state
of the tightly connected DMN and sensory processing network
was evident during high-comprehension moments (Fig. 6). A
recent framework characterized the DMN as a synthesizing net-
work that integrates extrinsic and intrinsic information to con-
struct a contextually coherent situational model (Ranganath and
Ritchey, 2012; van den Heuvel and Sporns, 2013; Chang et al,,
2021; Yeshurun et al., 2021). Our findings support this functional
role of the DMN, such that it integrates incoming events into the
accumulated contexts, thus constructing a coherent situational
model that is subjectively experienced as a feeling of comprehen-
sion. Previous studies suggested that the DMN regions represent
discrete narrative events (Baldassano et al., 2017; Chen et al.,
2017), modulated by the degree of narrative coherence (Lerner et
al,, 2011; Honey et al., 2012; Simony et al., 2016) and attention
(Dmochowski et al., 2012, 2014; Schmélzle et al., 2015; Ki et al.,
2016). Our study adds to these findings and argues that narrative
comprehension is not achieved via the workings of specific local
regions but rather achieved by a collective operation of large-
scale, distributed functional brain networks. The DMN plays a
critical role in mediating cooperative connections and adaptive
reconfiguration. This hypothesis is supported by our results with
dynamic predictive models, which suggest that narrative com-
prehension can be predicted only with the FC patterns but not
with the regional activation patterns.

Notably, previous literature has also related DMN activity to
an optimal attentional state, or to moments when stable behav-
ioral performance is maintained during monotonous but atten-
tionally taxing tasks (Esterman et al., 2013; Kucyi et al., 2016a,b,
2020; Van Calster et al.,, 2017; Zhang et al., 2019; Yamashita et
al,, 2021). How do we reconcile the recruitment of the DMN
during moments of the optimal attentional state (or moments of
“in the zone,” ease of processing, or effortless attention)
(Smallwood et al., 2008; Csikszentmihalyi and Nakamura, 2010;
Esterman and Rothlein, 2019), with the view of the DMN as an
integrator of external and internal information? In this study, we
characterized moments of narrative integration as moments
when participants experience subjective feelings of comprehen-
sion and moments when the incoming event is causally linked
with the past events. Thus, a feeling of comprehension may arise
when the relevant past information is retrieved with ease. In that,
the workings of the DMN during high-comprehension moments
can be broadly related to “an optimal state of information proc-
essing” in which information can be integrated, structured, and
retrieved with ease. This framework further hints at the mecha-
nism of how distant events in memory that are linked through
causal chain are integrated during comprehension. The causal
integration hypothesis assumes an ongoing memory retrieval
process, where the memory of the causally related events acts as
a context to the incoming inputs. We hypothesize that memory
retrieval during narrative comprehension would not necessarily
require conscious awareness or effortful search of memory by
the perceiver. Rather, memory retrieval would occur naturally
because the external (i.e., incoming event) and internal (i.e., related
events in memory) information is causally chained—acting as a
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contextual cue to one another—thereby, eliciting context reinstate-
ment (Polyn et al,, 2009; DuBrow et al,, 2017; Manning, 2021).

In our study, we assumed that the cognitive state changes
related to narrative comprehension would be minimal during the
Repeated Scrambled compared with the Initial Scrambled condi-
tion because participants no longer had to actively construct a new
storyline after having watched the movies in their original order.
However, it is important to note the possibility that the cognitive
states involved in the two conditions may be qualitatively different
in other aspects; for example, participants may have been overall
less engaged or aroused during the second viewing, attending to
different aspects of the story, such as examining background
details or nonimportant characters in the scenes, or they may have
been making predictions about the upcoming scenes
(Michelmann et al., 2021; C. S. Lee et al., 2021). The result that the
latent neural states were less synchronized across individuals dur-
ing the Repeated Scrambled condition (Fig. 7) reflects that partici-
pants may have been involved in a variety of idiosyncratic
cognitive states during repeated movie watching. Although the
degree to which these other cognitive factors are related to narra-
tive comprehension was not addressed in this study, future
research is required to characterize cognitive processes that may
differ between the novel and repeated viewing of the narratives.

A limitation of the current study is that we did not consider
variance across individuals related to narrative comprehension.
A general ability to comprehend narratives largely differs among
individuals, and the moments of comprehension during tempo-
rally scrambled movie watching may likewise be different. We
did not concurrently collect individual-specific measures of com-
prehension during scans, to exclude possible confounds that may
have been caused by performing an additional task. However,
the similarities in participants’ behavioral reports on moments of
comprehension provided a rationale to use the group measure of
comprehension to infer cognitive states of fMRI participants. A
relevant study (van der Meer et al., 2020) overcame this problem
by collecting concurrent physiological measures of heart rate and
pupil diameter during scans that acted as dynamic proxies of
subjective engagement to the movies. Future work may charac-
terize individual-specific changes in cognitive states and across-
individual differences in comprehension, using relevant physio-
logical measures, concurrent behavioral measures, or a post hoc
behavioral study.

Another consideration is whether a causal reinstatement that
occurs during scrambled movie watching reflects comprehension
of real-world narratives that progress in order. In our experiments,
we artificially scrambled the temporal sequence of the narratives
to amplify fluctuations in comprehension. However, real-world
narratives do not accompany such drastic changes in cognitive
states because comprehension occurs gradually as contextually
chained events progressively unfold in time (H. Lee and Chen,
2021). Thus, long-range connections between temporally distant
events (Fig. 3a) are less likely (though present in narratives)
because event representations accumulate and integrate gradually
(Franklin et al., 2020). Nevertheless, although fluctuations of cog-
nitive states, as well as the necessity of causal reinstatement, would
not be as prominent as in experimental context, similar cognitive
and neural mechanisms—transitions between external and inter-
nal modes of information processing, which are enacted by func-
tional segregation and integration of brain networks—would also
be involved during comprehension of real-world narratives.

Lastly, future studies are encouraged to investigate the under-
lying computational mechanisms explaining the accumulation
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and integration of narratives (Chien and Honey, 2020; Franklin
et al., 2020; Lu et al., 2020) in relation to the neural representa-
tion formed on a moment-to-moment basis (Wehbe et al., 2014;
Huth et al,, 2016; Vodrahalli et al., 2018). Our study provides
insights on how representations of discrete events across distant
times in memory, chained with causal relations, may be inte-
grated with accumulated inputs in real time to form coherent
narratives. Communication of information between functional
modules of the brain during comprehension may be imple-
mented via modulation of the FC and global reconfiguration of
the dynamic brain states.
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