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1.  INTRODUCTION

Individuals are amalgamations of their unique traits and 
abilities, and a key aim of cognitive neuroscience is 
uncovering how these personal characteristics arise from 
brain activity. But what is the nature of the relationship 
between individual differences in behavior and individual 
differences in brain activity?

If this question seems too theoretical to inform the 

day-to-day aspects of research, it is worth considering 

that we often answer it implicitly. Specifically, in modeling 

task performance or behavioral traits, we frequently 

assume that people who behave similarly, as measured 

by similar scores on a given metric, will demonstrate 

some shared pattern of brain activity. For instance, we 
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might examine brain activity of participants with depres-
sion, expecting that depressed participants will exhibit 
more or less activity (or functional connectivity) in a given 
region compared to controls (Greicius et al., 2007; Siegle 
et al., 2002). Another popular method of relating patterns 
of brain activity to task performance or traits is regression 
analysis. Regression analyses can identify univariate or 
multivariate patterns associated with self-report mea-
sures, such as the Beck Depression Inventory (BDI) for 
assessing depression severity (Bezmaternykh et  al., 
2021; Huang et al., 2021; Trettin et al., 2022; Zhang et al., 
2023). In the same vein, if we are interested in individual 
differences in sustained attention, we may opt to use 
regression to identify functional connectivity edges that 
are associated with better or worse attentional perfor-
mance on a behavioral task (Rosenberg et al., 2016; Yoo 
et al., 2022).

The idea that people who are similar in some regard 
will share some aspect of brain function is often assumed. 
But is it accurate? Returning to the example of depres-
sion research, suppose you are collecting fMRI movie 
watching data, and the patient sample is composed of 
some individuals with more externalizing symptoms and 
others with more internalizing symptoms. Perhaps the 
individuals with greater externalizing symptoms interpret 
the movie similarly, while those with greater internalizing 
symptoms are more unpredictable in their narrative inter-
pretations. Consequently, examining a brain activity in a 
region of interest, there may be greater variability in activ-
ity in patients with greater internalizing symptoms. How-
ever, correlating activity in this region with the internalizing 
symptom score might yield a null result, and running a 
t-test comparing activity in this region for the two sub-
groups could also yield a null result. In this way, by 
assuming that individuals with higher internalizing scores 
will appear similar in terms of brain activity, we run the 
risk of missing the underlying relationship entirely. (Tradi-
tional cognitive tasks are not immune to this potential 
pitfall; task-data functional connectivity analyses, for 
instance, could suffer from this same issue.)

Indeed, several studies provide evidence that occa-
sionally behavioral similarity (in the above example, similar 
clinical profile) accompanies less similar brain activity. For 
instance, work shows that participants with autism spec-
trum disorder exhibit lower neural synchrony during movie-
watching compared to controls (Hasson et al., 2009; Lyons 
et al., 2020; Salmi et al., 2013), as well as lower intersub-
ject similarity of subnetwork structure (Glerean et al., 2016) 
and greater variability in intersubject functional correlation 
states (Bolton et al., 2020). Intersubject correlation during 
movie-watching is also decreased among individuals with 
melancholic depression (Guo et  al., 2015), attention-
deficit/hyperactivity disorder (ADHD) (Salmi et al., 2020), 

and schizophrenia (Tu et al., 2019) compared to controls. 
Outside of movie-watching data, work has demonstrated 
that individuals with autism spectrum disorder show 
greater inter-individual variability in fMRI activity (as mea-
sured by correlational distance between vectorized beta 
values) during a spatial working memory task (Hawco 
et al., 2020). Greater variability between individuals may be 
related to greater variability within individuals over time. 
Within-subject analyses have revealed that brain-signal 
variability in the prefrontal cortex scales with ADHD symp-
tom severity in children (Nomi et al., 2018) and that patients 
with schizophrenia exhibit greater variability in fMRI activ-
ity than controls (Gallucci et al., 2022; Maïza et al., 2010; 
Yang et al., 2014). Individuals with eating disorders also 
demonstrate increased neuronal variability in the ventral 
attention network during resting state relative to controls 
(Spalatro et al., 2019). In sum, a great deal of clinical work 
has found evidence of increased variability in brain activity 
between and within individuals diagnosed with autism 
spectrum disorder, depression, ADHD, schizophrenia, and 
eating disorders (Dinstein et al., 2015).

Similar behavior, therefore, does not always imply sim-
ilar brain activity. When should we expect this to be the 
case? Recent work by Finn and colleagues proposes a 
paradigm that can help elucidate the complex relationship 
between brain and behavioral similarity by empirically 
testing different models of brain-behavior relationships 
(Finn et al., 2020). The first model, the Nearest Neighbors 
model, operationalizes the assumption that those who 
score similarly on some behavioral metric (e.g., task per-
formance or questionnaire score) will appear similar in 
brain activity. Studies testing for a linear brain-behavior 
relationship assume the Nearest Neighbors model. Alter-
natively, the second model, the Anna Karenina (AnnaK) 
model is named after the opening line of the novel Anna 
Karenina: “Happy families are all alike; every unhappy 
family is unhappy in its own way.” The AnnaK model pro-
poses that one end of a behavioral spectrum is associated 
with greater variability in brain activity. Finn et  al. found 
that a measure of working memory showed an AnnaK-
style relationship, where high scorers displayed greater 
neural synchrony with each other, whereas low-scoring 
participants were dissimilar to both low and high scorers.

Here, we replicate and extend this finding in two inde-
pendent fMRI datasets in which youth or adult partici-
pants watched movies during scanning. In doing so, we 
can determine to what extent the best model linking brain 
and behavioral similarity depends on the characteristics 
of the sample in question or on the specific behavior or 
phenotypic measure under investigation. To compute 
brain similarity, we use intersubject correlation during 
movie watching, a measure that has been shown to reflect 
narrative understanding, such that individuals with similar 
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interpretations demonstrate greater intersubject correla-
tion (Nguyen et al., 2019; Yeshurun et al., 2017; Zadbood 
et  al., 2022). In analyzing a developmental dataset, we 
extend work suggesting that within-individual neural vari-
ability changes across development, with older children 
showing greater variability in EEG signal (McIntosh et al., 
2008) and fMRI functional connectivity (Hutchison & 
Morton, 2015; Marusak et  al., 2017) than younger chil-
dren. Specific to intersubject correlation in development 
in particular, prior work found that a relationship between 
depression symptoms and neural synchrony emerges in 
adolescence, suggesting that brain-behavior relation-
ships may vary as a function of age (Gruskin et al., 2020).

Ultimately, across both the developmental and young 
adult sample, we find significant evidence for the AnnaK 
model. The AnnaK model fits our data across six mea-
sures: three in the developmental sample (a working 
memory task, an attention/executive function task, and a 
language task) and three in the adult sample (a working 
memory task, a sustained attention task, and a divided 
attention/tracking task). In contrast, the Nearest Neigh-
bors only explains significant variance in neural similarity 
for a subset of measures where we find support for the 
AnnaK model. As a whole, our findings illustrate that neu-
ral similarity depends not only on whether two individuals 
resemble each other behaviorally, but also on one’s abso-
lute position on a behavioral scale.

2.  METHODS

2.1.  Overview

We perform intersubject representational similarity analy-
sis in two datasets with different demographic character-
istics (a developmental sample including patients with 
varied psychiatric diagnoses, and a non-clinical adult 
sample) and types of movie stimuli (a clip of an animated 
movie, and an abstract visual-only film). In each of these 
datasets, we assess the fit of two theoretical models 
of  brain-behavior relationships: the Nearest Neighbors 
model and the AnnaK model, to determine which model 
best describes the data for a given behavioral trait or 
task. Finally, in examining the results of our two datasets 
in tandem, we investigate potential similarities in brain-
behavior relationships which hold across differences in 
sample characteristics and stimulus choice.

2.1.1.  Dataset 1: Healthy Brain Network

2.1.1.1.  Participants.  To investigate how similarity in 
brain activity relates to behavioral similarity in develop-
ment, we analyzed data from the Healthy Brain Network 
Biobank (Alexander et al., 2017). This project is collecting 

data from children and adolescents aged 5-21 years with 
a diversity of clinical concerns (the majority of the sample 
having one or more clinical diagnosis). The Healthy Brain 
Network project was approved by the Chesapeake Insti-
tutional Review Board. Secondary data analysis was 
approved by the University of Chicago Institutional 
Review Board. Of interest to our current analysis, the 
dataset includes one fMRI run collected while partici-
pants watch an emotionally evocative video, specifically 
a 10-minute clip from the movie Despicable Me. In addi-
tion to fMRI data, this sample also contains a large 
assortment of phenotypic measures, including psychiat-
ric and learning assessments, and questionnaires per-
taining to environmental and lifestyle factors. We analyze 
a subset of these measures in the present study (see 
Behavioral Data for details).

To determine our final study sample, we first down-
loaded all phenotypic data available as of March 8, 
2022 and all available neuroimaging data collected at 
sites Rutgers and Citibank Biomedical Imaging Center 
from Healthy Brain Network releases 1-8. Of the partic-
ipants with downloaded data (n = 2131), we subset the 
sample to those who had complete Despicable Me fMRI 
data and acceptable motion during this scan (defined 
as maximum head displacement <3  mm and mean 
framewise displacement <.15 mm) (n = 529). Of the par-
ticipants with a usable Despicable Me scan, we retained 
only participants who had phenotypic data and whose 
anatomical scan passed visual quality control inspec-
tion (n = 480).

From this point, phenotypic measures available in 
90% of the sample were retained. Of the remaining vari-
ables, two raters from our lab selected measures pertain-
ing to five domains of interest selected a priori (cognitive, 
attention, social, emotional, and language) and grouped 
these measures by domain. From these measures, a final 
variable was chosen from each category (see description 
below). Finally, participants missing any of these mea-
sures were excluded, resulting in a final sample of n = 409 
participants (163 F, 246 M; mean age = 12.26 ± 3.5 years, 
range  =  6–22  years, see Supplementary Fig.  1 for age 
distribution). The final sample had a mean framewise dis-
placement of .096  mm, with a standard deviation of 
.026  mm. In the Healthy Brain Network sample, head 
motion is negatively correlated with age (Pearson correla-
tion r(407) = -.35, p < .001).

2.1.1.2.  Behavioral data.  To assess relationships 
between behavioral similarity and neural synchrony, we 
took advantage of the large variety of phenotypic data 
provided by the Healthy Brain Network. The measures 
analyzed included self-report questionnaires, parent-
completed questionnaires, and cognitive assessments 
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such as the NIH toolbox (Hodes et al., 2013). For a com-
plete list of measures analyzed, please see Supplemen-
tary Figure 2.

2.1.1.3.  fMRI data acquisition.  Data analyzed were col-
lected at one of two sites: Rutgers University Brain Imag-
ing Center or the Citibank Biomedical Imaging Center. 
Rutgers data were collected on a Siemens 3 T Tim Trio 
magnet. Citibank Biomedical Imaging Center data were 
collected on a Siemens 3 T Prisma. Both sites used the 
following parameters for the functional Despicable Me 
scan: TR = 800 ms, TE = 30 ms, # slices = 60, flip angle = 
31, # volumes = 750, voxel size = 2.4 mm3, multiband 6. 
For more information regarding Healthy Brain Network 
scan parameters, please see Alexander et al. (2017) and 
http://fcon​_1000​.projects​.nitrc​.org​/indi​/cmi​_healthy​
_brain​_network.

2.1.1.4.  fMRI preprocessing.  AFNI was used to prepro-
cess fMRI data. First, three volumes were removed from 
each run, followed by despiking and head motion correc-
tion. Then, functional images were aligned to the skull-
stripped anatomical image with a linear transformation 
and then to the MNI atlas via nonlinear warping. Covari-
ates of no interest were regressed from the data, includ-
ing a 24-parameter head motion model (6 motion 
parameters, 6 temporal derivatives, and their squares) 
and mean signal from subject-specific eroded white mat-
ter and ventricle masks and the whole brain. Finally, 
images were band-pass filtered from .01 to .1 Hz.

2.1.2.  Dataset 2: Yale Attention

2.1.2.1.  Participants.  To compare our findings in devel-
opment with that of an independent adult sample, we 
analyzed a dataset of healthy young adults who partici-
pated in a two-session neuroimaging experiment 
(Rosenberg et al., 2020; Yoo et al., 2022). Sessions were 
separated by 17.31 days on average (s.d. = 20.21 days, 
median  =  12  days; Yoo et  al., 2022). This project was 
approved by the Yale University Human Subjects Com-
mittee. Relevant to the present analysis, the participants 
in this study completed a fMRI run during each session in 
which they watched the short film Inscapes (Vanderwal 
et al., 2015). This film consists of dynamic visuals with no 
discernible narrative, making for an interesting compari-
son to the plot-driven clip shown in the Healthy Brain 
Network dataset. This film was shown to the participants 
without sound. Prior to our access of the data, 33 partic-
ipants were excluded due to unacceptable head motion 
(>3  mm maximum head displacement and >.15  mm 
mean framewise displacement), task performances fall-
ing 2.5 standard deviations above or below the mean, or 

because of low-quality imaging data. After accessing the 
data, an additional 9 scans were dropped due to having 
greater than 50% of frames censored for motion. This 
yielded a final sample of n = 71 participants (47 F, 24 M; 
mean age = 22.86 ±  4.28 years, range = 18–36 years). 
The mean framewise displacement in the final sample is 
as follows: Session 1 mean: .089, standard deviation: 
.018; Session 2 mean: .093, standard deviation: .019. 
This motion is less than that of the Healthy Brain Network 
sample, although this difference is not significant for the 
second session (independent-samples t-test Session 1: 
t478 = -2.37, p = .02, Session 2: t478 = -1.32, p = .19).

2.1.2.2.  Behavioral data.  Whereas the Healthy Brain 
Network phenotypic data consist primarily of question-
naires, the Yale Attention dataset includes performance 
measures from three validated cognitive tasks. In this 
study, participants completed two sessions of the follow-
ing three tasks designed to assess working memory and 
attentional performance: sustained attention measured 
with the gradual-onset continuous performance task 
(gradCPT), working memory measured with the visual 
short-term memory task (VSTM), and divided attention 
and tracking measured with the multiple object tracking 
task (MOT). For detailed descriptions of timing and other 
parameters for all tasks, see Yoo et al. (2022).

The working memory task, the VSTM task, is a change 
detection task measuring visual working memory. During 
this task, participants viewed an array of 2, 3, 4, 6, or 8 
colored circles, which were randomly positioned on the 
screen. After 100 ms, the circles were replaced by a fixa-
tion square for 900 ms before reappearing. In half of the 
trials, the colors of the circles remained unchanged, and 
on half the circles reappeared in a different color. Partici-
pants had to press one button if they detected a color 
change and a different button if there had been no 
change. Performance on this task was measured with 
Pashler’s K (Pashler, 1988).

The sustained attention task, the gradCPT (Esterman 
et  al., 2013) assesses participants’ sustained attention 
and inhibitory control function. In this task, city and 
mountain photographs are displayed and participants 
were instructed to press a button in response to city 
scenes (appearing on 90% of trials) and withhold 
responses when mountain scenes appear (10% of trials). 
Images gradually transition from one to the next at a rate 
of 800 ms/trial. Performance was assessed by mean sen-
sitivity (d’).

Finally, the divided attention and tracking task, the 
MOT task, assesses attentional selection and tracking 
(Luck & Vogel, 1997) and was adapted from code from 
Liverence and Scholl (2012). On each trial, 12 white cir-
cles appeared. Three or five of the circles (the targets) 

http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network
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blinked green briefly before all circles began to move 
around the screen. Participants had to track the locations 
of the targets until the display stopped moving. When it 
stopped, one circle flashed, and participants pressed a 
button to indicate if that circle had been a target. Perfor-
mance was assessed by mean accuracy across all trials.

2.1.2.3.  fMRI data acquisition.  Data were collected at 
the Yale Magnetic Resonance Research Center and 
Brain Imaging Center on a 3  T Siemens Prisma with a 
64-channel head coil. The following parameters were 
used for the functional scan analyzed here (Inscapes 
movie-watching): TR = 1,000 ms, TE = 30 ms, # slices = 
52, flip angle = 62°, # volumes = 600, voxel size = 2.5 mm3, 
and multiband 4. For more information regarding the 
scan parameters of this data set, please see Yoo et al. 
(2022).

2.1.2.4.  fMRI preprocessing.  AFNI was used to prepro-
cess fMRI data. First, three volumes were removed from 
each run. Then, censoring was performed, removing vol-
umes in which greater than 10% of voxels were outliers, 
or for which the Euclidean norm of the head motion 
parameter derivatives was greater than .2 mm. Despik-
ing, slice-time correction, motion correction, and regres-
sion of mean signal from the CSF, white matter, and whole 
brain was performed. Additionally, 24 motion parameters 
(6 motion parameters, 6 temporal derivatives, and their 
squares) were regressed from the data. Functional 
images were aligned to the skull-stripped anatomical 
image with a linear transformation, and to the MNI atlas 
via nonlinear warping.

2.2.  Pairwise intersubject time-course correlation

For every individual in each dataset, preprocessed BOLD 
signal time-courses were averaged across voxels within 
regions of interest using a 268-node whole-brain parcel-
lation (Shen et al., 2013). For every node, each partici-
pant’s BOLD signal time-course was z-scored within- 
subject and Pearson correlated with that of every other 
individual in the cohort. This yields a participant-by-
participant “brain-similarity” matrix for each node, with 
each cell representing the synchronization of activation in 
that node for two individuals. We repeated this process in 
the Healthy Brain Network sample and the Yale Attention 
sample.

2.3.  Intersubject representational similarity analysis

After creating intersubject correlation matrices for each 
node and dataset cohort, we implemented intersubject 
representational similarity analysis (IS-RSA) to test two 

models of brain-behavior relationships: 1) a Nearest 
Neighbors model hypothesizing that individuals with sim-
ilar behavioral PC scores will show greater brain similarity 
and 2) an Anna Karenina (AnnaK) model stating that indi-
viduals with high behavioral scores will show greater 
brain similarity whereas low scorers will show lower brain 
similarity (or vice versa) (Chen et  al., 2020; Finn et  al., 
2020; van Baar et al., 2019). The goal of this approach is 
to determine which of the models, if either, explains the 
observed relationship between brain similarity and 
behavioral similarity.

To do this, we computed three participant-by-
participant matrices: one for brain similarity (pairwise 
intersubject correlation), and two for behavioral similarity 
(see Fig. 1). For the Nearest Neighbors model, behavioral 
similarity is defined as the absolute value of the differ-
ence in behavioral scores, multiplied by negative one 
(meaning larger values indicate greater similarity). For the 
AnnaK model, behavioral similarity is the mean of the 
behavioral scores (note that other operationalizations of 
this model exist, see Finn et al., 2020).

To test how well our models capture brain-behavior 
relationships, we applied Spearman partial correlation to 
relate the vectorized lower triangles of the symmetric 
brain and behavioral similarity matrices, controlling for 
participant age and sex. To control for participant age 
and sex, we created three additional matrices: 1) a sex 
matrix (where a cell contains a one if participants i and j 
have the same sex, zero otherwise), 2) an AnnaK age 
matrix (where a cell contains the average of participant i 
and participant j’s ages), 3) a Nearest Neighbors age 
matrix (where a cell contains the absolute value of the 
difference of participant i and participant j’s ages), 4) an 
AnnaK motion matrix (where a cell contains the average 
of participant i and participant j’s mean frame-wise dis-
placement), and 5) a Nearest Neighbors motion matrix 
(where a cell contains the absolute value of the difference 
of participant i and participant j’s mean frame-wise dis-
placement). These control matrices and interaction of the 
age and sex matrices were regressed out of the brain and 
behavioral similarity matrices, and the subsequent analy-
sis was performed on the residuals (to see a version of 
the analysis without control matrices regressed out, see 
Supplementary Fig. 3). Ultimately, the primary measure of 
interest is the Spearman correlation between the residu-
alized brain and behavioral similarity matrices (calcu
lated using a Python implementation of the Mantel test 
https://github​.com​/jwcarr​/mantel). This correlation indi-
cates how well the AnnaK and Nearest Neighbors models, 
respectively, fit the observed brain data. This correlation 
is performed in each of the 268 nodes in our parcellation 
for the IS-RSA of intersubject correlation. It is worth not-
ing that both a positive and negative Spearman’s rho is 

https://github.com/jwcarr/mantel
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an interpretable effect for the AnnaK model. A positive 
correlation would indicate that greater behavioral values 
are associated with higher neural synchrony. A negative 
correlation signifies that lower behavioral values are cor-
related with higher neural synchrony.

To determine significance of model fit for each node, we 
performed permutation testing (10,000 permutations). For 
each permutation, the subject labels of the behavioral 
matrix were randomly shuffled, and the correlation between 
brain and behavioral matrices was re-calculated, generat-
ing a null distribution of 10,000 Spearman rho-values for 
each node. After using the null distribution to calculate a 
two-tailed p-value for every node, the Holm-Bonferroni 
method was used to correct for multiple comparisons. To 
test whether there is greater evidence across the whole 
brain than would be expected by chance, we used an 
approach akin to the familywise error control method 

described in Finn et al. (2020). We randomly generated p-
values for each of our 268 nodes, calculated the number of 
nodes which survive a p-threshold of .05, and repeated 
this 10,000 forming a null distribution. We compare the 
observed number of significant nodes to this null distribu-
tion to obtain a whole-brain p-value. Note, that while Finn 
et al. (2020) performed this calculation for a split-half anal-
ysis, in our calculation we use the whole sample.

In order to assess the consistency of each model’s 
effects, we repeated the calculation of Spearman’s rho 
for each model in a split-half fashion. Participants were 
randomly divided into two cohorts, and intersubject RSA 
was performed separately on each cohort. This analysis 
allows us to determine how similar the rho-values for a 
given node are across the two cohorts.

Finally, we directly compared AnnaK and Nearest 
Neighbors, testing if we find greater evidence for either 

Fig. 1.  Brain and behavioral similarity matrices. Here, we show similarity matrices, where each row and each column 
represent a participant. Participants are ordered by behavioral score (ascending). On the left are brain similarity matrices, 
defined as pairwise intersubject correlation for an example node (node 41) in the Shen parcellation for each dataset. On 
the right are two different behavioral similarity matrices for the first cohort of each dataset. The first behavioral matrix is 
calculated according to the AnnaK model, while the second is calculated according to the Nearest Neighbors model. To 
assess the relationship between brain similarity and behavioral similarity, we run intersubject representational similarity 
analysis Spearman correlating the brain and behavioral matrices. Here, we show intersubject RSA results in the three 
tasks in the Yale Attention dataset. Plotting conventions are the same as in Figure 2.
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model when averaging effects across the whole brain. To 
do so, we first took the difference in the Fisher-Z trans-
formed rho-values for each node (subtracting the Nearest 
Neighbors Fisher-Z value from the AnnaK Fisher-Z value). 
Next, we averaged this difference across all 268 nodes to 
get a single difference value, at which point we applied 
the inverse Fisher-Z transform. To assess significance, 
we repeated this process 10,000 times, each time shuf-
fling the subject labels of the behavioral matrix, to create 
a null distribution. Using this null distribution, we calcu-
late a two-sided, non-parametric p-value for each behav-
ioral measure in each of our two datasets.

3.  RESULTS

3.1.  Principal component analysis of behavioral 
measures in Healthy Brain Network data

After dividing the behavioral measures into five broad 
behavioral domains (see Supplementary Fig.  2), we 
applied principal component analysis (PCA) to the mea-
sures in each behavioral domain in the Healthy Brain Net-
work sample. We examined the resulting components, 
finding that the first principal component explained 47%, 
39%, 40%, 68%, and 47% of variance, for the cognitive, 
social, emotional, attentional, and language domains, 
respectively (Supplementary Fig.  2). From here, we 
retained the measure from each domain that explained 
the most variance in the first components, with two 
exceptions. For the attention domain, we chose to use 
the Flanker Inhibitory Control and Attention Test, as it 
provides a behavioral task measure of attention function, 
rather than a questionnaire measure of attention, com-
plementing the task measures of attention from the Yale 
Attention sample. For the cognitive domain, we chose to 
retain the NIH List Sorting Working Memory Test measure 
to directly replicate past work in adults using the same 
measure (Finn et al., 2020) (alternatively, to see results for 
each “cognitive” variable see Supplementary Fig. 4). For 
an alternative analysis using the first principal component 
as a summary score, see Supplementary Figure 5.

Questionnaire measures were retained for two 
domains, social (the Social Responsiveness Scale, mea-
suring social function) and emotional (Child Behavior 
Checklist Anxious/Depressed subscale, measuring anxi-
ety and depression symptoms). We reverse-coded these 
measures so that larger values indicate less severe social 
impairment and anxiety and depressive symptoms, 
respectively. Task performance measures were retained 
for three domains, cognitive (NIH Toolbox List Sorting 
Working Memory Test, measuring verbal working mem-
ory), attentional (NIH Toolbox Flanker Inhibitory Control 
and Attention Test, measuring attention and executive 

function), and language (Test of Word Reading Efficiency 
[TOWRE], measuring reading accuracy and fluency). 
Higher task performance scores indicate better perfor-
mance. To see correlations between task, age, and head 
motion, see Supplementary Figure  6. Throughout the 
results, we refer to these five retained measures as work-
ing memory, attention/executive function, language, 
depression/anxiety, and social function.

We did not apply PCA to the behavioral measures 
from the Yale Attention dataset as there were only three 
measures in total, which assessed aspects of attention 
and working memory.

3.2.  Pairwise intersubject time-course correlation

To ask if we can better understand individual differences in 
behavior by examining intersubject correlation (ISC), we 
first need to establish that the fMRI BOLD activity time-
courses of the movie watching scans are correlated, as we 
would anticipate. To perform this preliminary check, we 
averaged ISC values across all pairs of participants for 
each node in our 268 node parcellation (Supplementary 
Fig. 7). Average ISC across the whole brain was positive in 
both datasets and no nodes exhibited negative average 
ISC (Healthy Brain Network: mean r = .062, range: r = [.008, 
.249]; Yale Attention: mean r = .038, range: r = [.014, .268]). 
Overall, we observed the highest levels of ISC in regions 
predicted to be the most synchronized during movie 
watching: areas associated with visual and auditory pro-
cessing. For instance, in the Healthy Brain Network sam-
ple, which included an audiovisual movie stimulus, the 
nodes with the five highest ISC values were in one of three 
areas: extrastriate cortex (r  =  .11, .13), Wernicke’s area 
(r = .10, .18), and visual association cortex (r = .12). In the 
Yale Attention sample, which included a visual-only movie, 
the five nodes with the highest ISC were all within the pri-
mary visual cortex (r =  .19, .20, .22, .25, .27).

3.3.  Intersubject representational similarity analysis

3.3.1.  Intersubject RSA reveals significant 
representational similarity across behavioral 
domains in the Healthy Brain Network sample

Previous work analyzing a working memory task in young 
adults demonstrated greater evidence for an AnnaK model 
than the Nearest Neighbors model (Finn et al., 2020). In 
other words, participants who scored similarly did not 
always display greater neural synchrony during movie 
watching. Rather, high scorers on the working memory 
task appeared more synchronized with high scorers and 
while low scorers were less in-sync with all others. Here, 
we first asked whether this result is idiosyncratic to either 
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the particular sample studied or to the particular type of 
movie analyzed. For instance, is the AnnaK effect depen-
dent on the video shown containing a narrative arc? One 
possibility is that participants who score highly on a behav-
ioral measure may interpret the narrative similarly in a way 
that is reflected in their BOLD activity. If this is the case, we 
would not expect to find evidence for the AnnaK model in 
the Yale Attention dataset, which uses Inscapes, a film 
with no narrative or plot to interpret. We then asked which 
model best explains the relationship between brain simi-
larity and similarity in different types of behaviors. One 
possibility is that the AnnaK model will generally outper-
form the Nearest Neighbors model across a variety of 
behavioral domains. Alternatively, it is possible this effect 
is specific to working memory function, the measure 
assessed in previous work using data from the Human 
Connectome Project (Finn et al., 2020). If the AnnaK model 
is primarily a good fit for working memory measures, we 
would expect to find the AnnaK model to be a good fit for 
only two out of the eight behavioral measures analyzed 
presently: the Healthy Brain Network working memory 
task (NIH toolbox ListSort) and Yale Attention working 
memory task (VSTM). Furthermore, since prior work used 
an adult sample, it is also possible that the AnnaK model 
does not describe brain–behavior relationships in develop-
ment. In this case, we would not expect to find an AnnaK 
effect in the Healthy Brain Network working memory task.

To investigate, we analyzed brain-behavior relation-
ships in eight behavioral measures using two separate 
movies viewed in scanner and two independent samples 
(see Fig.  2). In the Healthy Brain Network sample, the 
AnnaK model captures brain-behavior relationships in 
more nodes than would be expected by chance for the 
working memory task, attention/executive function task, 
and the language task (familywise p  <  .0001). Of the 
nodes demonstrating an AnnaK effect, 76 nodes in the 
working memory task, and two nodes in the language 
task nodes survive Bonferroni correction for 268 compar-
isons. Conversely, the Nearest Neighbors model only 
captures brain-behavior relationships in more nodes than 
expected by chance for the working memory task (family-
wise <.001, all other familywise p > .95). Additionally, no 
nodes show a significant Nearest Neighbors relationship 
after multiple comparisons correction. For all five behav-
ioral measures, we observe more significant nodes 
(uncorrected p  <  .05) under the AnnaK model than the 
Nearest Neighbors model (difference in # of significant 
nodes, AnnaK – Nearest Neighbors: working memory: 
100, attention/executive function: 49, language: 30, 
depression/anxiety: 11, social function: 3). Finally, exam-
ining the split-half consistency of the effects for each 
model, the AnnaK model exhibits greater replicability than 
the Nearest Neighbors model for all five domains (AnnaK 

r
cohort 1, cohort 2 working memory: .52, attention/executive 

function: .06, language: .3, depression/anxiety: .22, social 
function: .12, Nearest Neighbors rcohort 1, cohort 2: working 
memory: .12, attention/executive function: -.05, language: 
-.32, depression/anxiety: .06, social function: -.06).

The AnnaK model captures brain-behavior relation-
ships in more nodes than would be expected by chance 
for all three task measures (familywise p < .0001), but not 
the questionnaire-based measures of social function and 
depression/anxiety symptoms. More research is needed 
to determine if this difference in results is due to the 
nature of the measurement (task vs. questionnaire) or the 
nature of the underlying behavioral or mental processes. 
Preliminary evidence points to the former hypothesis, as 
prior research examining a non-self-report social mea-
sure, number of social connections reported by one’s 
peers, found a robust AnnaK-effect in several brain 
regions (Baek et al., 2022).

Of all behavioral measures and models tested, the 
AnnaK model significantly reflects brain-behavior relation-
ships for the most nodes in the working memory task, fol-
lowed by the attention/executive function task. As an 
exploratory analysis testing the extent to which the AnnaK 
model fits other cognition-related measures, we took each 
variable comprising the cognitive PCA (see Methods) and 
replicated the IS-RSA with these variables individually 
(Supplementary Fig.  4). Out of the 12 variables tested, 
eleven demonstrate a better fit with the AnnaK model 
judging by the number of significant nodes. Consequently, 
the AnnaK effect in the cognitive domain does not appear 
to be specific to the cognitive tasks shown here.

As a final method of assessing the models, we com-
puted a whole-brain summary score by averaging all 
nodes’ rho-values. Judging by the difference in this sum-
mary score, the AnnaK model numerically outperformed 
the Nearest Neighbors model in every behavioral measure 
tested in the Healthy Brain Network sample. Comparing 
this difference score to a permuted null distribution of dif-
ference scores, the AnnaK model better captured the rela-
tionship between brain and behavioral similarity than the 
Nearest Neighbors model in for the working memory and 
attention/executive function tasks (p = .027 and p = .017).

In sum, across all five behavioral domains in the 
Healthy Brain Network sample, we found more support 
for the AnnaK model than the Nearest Neighbors model, 
and we found significant evidence for the AnnaK model 
across all task measures (working memory, attention/
executive function, and language). We found support for 
Nearest Neighbors-style relationships in only one 
behavioral measure: working memory. The positive rho-
values of the AnnaK effect suggest that participants 
who score higher on assessments of working memory, 
attention, and reading ability are more synchronized 
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during movie-watching while those who score lower are 
less synchronized.

3.3.2.  Intersubject RSA reveals significant 
representational similarity across behavioral 
domains in the Yale Attention sample

Turning to the results in the Yale Attention Dataset, the 
AnnaK model reflected brain-behavior relationships in all 
three tasks, as evidenced by more significant nodes than 

would be expected due to chance (familywise p < .0001, 
see Fig.  3). The Nearest Neighbors model significantly 
reflected brain-behavior relationships for sustained atten-
tion (gradCPT) and working memory (VSTM) (familywise 
p < .0001), but not MOT (familywise p = .13), performance. 
For two out of three tasks, we observed more significant 
nodes (uncorrected p < .05) under the AnnaK model than 
the Nearest Neighbors model (difference in # of significant 
nodes by domain, AnnaK - Nearest Neighbors: sustained 
attention [gradCPT]: 4, divided attention/tracking [MOT]: 

Fig. 2.  Relating behavior and neural synchrony with intersubject RSA: Healthy Brain Network Sample. In the glass brain, 
nodes are colored according to representational similarity for each model in our two datasets. Nodes with a black circle at 
their centroid demonstrate significant representational similarity (p < .05, after correction for 268 comparisons). Nodes with 
a gray circle are significant before multiple comparisons correction (p < .05). p-Values above the glass brains correspond 
to the whole-brain familywise p-value (see Methods). Glass brains without p-values above all show familywise p > .05.  
The scatterplots to the right of the glass brains show the reliability of the effects as determined by a split-half analysis. 
The x-axis is determined by the representational similarity rho-value in cohort 1 of the split-half analysis. The y-axis is 
determined by the representational similarity rho-value in cohort 2. The regression line and r-value labeled in the plot 
indicate the correlation of the effects across the two cohorts, providing insight into the consistency of the effects across 
halves of the sample, with a higher correlation indicating greater consistency. Note: the rho-values in the scatterplot are 
separate from the Spearman’s rho node colors on the glass brain; the former represents effect consistency across all 268 
nodes, while the latter denotes the fit of the model in that specific node.
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3, working memory [VSTM]: -2). Of the two domains with 
nodes surviving multiple comparisons correction, both 
showed more significant nodes under the AnnaK model 
(difference in # of significant nodes by domain, AnnaK - 
Nearest Neighbors: sustained attention [gradCPT]: 4, 
working memory [VSTM]: 3). Finally, the effects of the 
AnnaK model demonstrated greater split-half consistency 
for all three behavioral tasks (difference in consistency by 
domain, AnnaK rcohort 1, cohort 2 - Nearest Neighbors rcohort 1, 

cohort 2: sustained attention [gradCPT]: .30, divided atten-
tion/tracking [MOT]: .29, working memory [VSTM]: .07).

Examining the whole-brain summary analysis in the 
Yale Attention sample, the AnnaK model significantly out-
performed the Nearest Neighbors model in the sustained 
attention measure (p  =  .025), with stronger numerical 
effects in the other two measures, divided attention/
tracking (p = .078) and working memory (p = .079).

Ultimately, relative to the AnnaK model, we found less 
compelling evidence for the Nearest Neighbors model, a 
model grounded in the intuitive hypothesis that people 
who are more similar on a behavioral scale will show 
more similar brain responses. Rather, on the whole, we 
found more evidence that brain-phenotype relationships 
examined showed an AnnaK-style pattern, wherein high 
scorers were synchronized with other scorers while low-
scoring participants showed less synchrony across the 
board. Although more research is necessary to determine 
under what conditions the AnnaK model describes brain-
behavior relationships, here we demonstrate that this 
effect is robust to sample demographics (e.g., children 

and adolescents vs. adults), movie type (e.g., narrative 
vs. non-narrative), and the behavioral measure itself (e.g., 
working memory vs. sustained attention).

3.3.4.  Anatomical distribution of intersubject  
RSA effects differs by dataset

Aside from how well the AnnaK and Nearest Neighbors 
models describe the relationships between brain and 
behavior, we were also curious as to where in the brain 
these models fit the data well. One possibility is that we 
find more significant nodes in areas where ISC is high; 
this would mean auditory processing areas for the Healthy 
Brain Network dataset and visual processing areas for 
both datasets (the Yale Attention stimuli did not have 
audio). Alternatively, if ISC is too high, it may not provide 
enough variance to successfully relate to individual differ-
ences in behavior. The nature of the stimulus type may 
also modulate where each model of representational sim-
ilarity fits. For instance, synchrony in higher-order regions 
may prove more important when the video stimulus con-
tains more emotional or narrative content, such as the clip 
shown to the Healthy Brain Network participants. Finally, 
the distribution of nodes could depend on the model in 
question, with some regions exhibiting more AnnaK or 
Nearest Neighbors-style relationships respectively.

To answer this question, we displayed nodes demon-
strating significant representational similarity (uncorrected 
p < .05) within a given model according to which network 
they belong to (Supplementary Fig.  8). Looking at the 

Fig. 3.  Relating behavior and neural synchrony with intersubject RSA: Yale Attention Sample.
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Nearest Neighbors model in the Healthy Brain Network 
sample, we observed more nodes than would be expected 
by chance in the motor network. For the AnnaK model, we 
observed more nodes than would be expected by chance 
in the Visual I network. In the Yale Attention sample, every 
behavior for both models showed the greatest number of 
nodes in the visual cortex. There were more significant 
nodes in the primary visual cortex than would be expected 
by chance for both the sustained attention (gradCPT) and 
working memory (VSTM) tasks across both models (all 
p < .001) and for the divided attention/tracking task (MOT) 
in the AnnaK model (p < .01). The Yale Attention sample 
has a high concentration of nodes in early visual areas 
across all measures and both models, while the Healthy 
Brain Network exhibits effects less consistently concen-
trated in the primary visual cortex.

3.3.5.  Model fit is correlated with intersubject 
correlation

To better understand how our power for detecting indi-
vidual differences varies as a function of ISC, we also 
assessed the extent to which the intersubject RSA model 
fit is correlated with average ISC (Supplementary Figs. 9, 
10). If neural synchrony is associated with greater power 
for picking up on individual differences, we would expect 
a positive correlation between ISC and model fits. Indeed, 
this is what we observed. In every instance where the 
intersubject RSA was significant at the whole-brain level, 
we see a strong positive correlation between node-wise 
ISC and node-wise IS-RSA rho (Health Brain Network 
AnnaK: working memory: r  =  .86 attention/executive 
function: r  =  .63, language: .53; Nearest Neighbors: 
working memory: r  =  .57; Yale Attention AnnaK: sus-
tained attention [gradCPT]: r  =  .87, divided attention/
tracking [MOT]: r = .77, working memory [VSTM]: r = .87; 
Nearest Neighbors: sustained attention [gradCPT]: 
r = .77, working memory [VSTM]: r = .80). In fact, in 14 
out of 16 instances (2 models x 8 behavioral measures), 
we observed a positive correlation between ISC and  
IS-RSA effects. Here, perhaps counterintuitively, greater 
similarity across subjects’ brain activity appears to better 
allow us to understand behavioral differences, consistent 
with prior work showing that movie data are better than 
rest data for predictive modeling of individual differences 
in behavior (Finn & Bandettini, 2021).

3.3.6.  Both AnnaK and Nearest Neighbors models 
significantly describe the relationship between 
neural similarity and age in development

The AnnaK model significantly captured brain-behavior 
relationships in all three behavioral tasks in the Healthy 

Brain Network sample and all three behavioral tasks in 
the Yale Attention sample. The Nearest Neighbors model 
significantly fit the data for the working memory task in 
the Healthy Brain Network sample and the sustained 
attention (gradCPT) and working memory (VSTM) tasks in 
the Yale Attention sample. We next wanted to ask about 
the relationship between a different type of phenotypic 
measure—age—and neural synchrony. Do participants 
more similar in age show higher ISC as predicted by the 
Nearest Neighbors model, or do older (or younger) partic-
ipants show more similar ISC as predicted by the AnnaK 
model? One might predict similarity in participant age to 
exhibit a Nearest Neighbors-style relationship, particu-
larly in the Healthy Brain Network sample, due to its 
inclusion of ages that span the course of adolescence 
(6–22). For instance, a 7-year-old and a 21-year-old are 
likely to have different interpretations of a narrative stim-
ulus, and these interpretations may be reflected in differ-
ent fMRI time-courses during movie-watching. Unlike the 
developmental Healthy Brain Network sample, the Yale 
Attention dataset is a sample of young adults (aged 18–
36). The brain undergoes significant changes during 
development, and shows relative stability during early 
adulthood (Bethlehem et al., 2022), and consequently we 
might anticipate less age-related variability in video pro-
cessing in the Yale sample, potentially resulting in little 
age-related differences in neural synchrony. This in turn 
would result in a poor fit for both the AnnaK and Nearest 
Neighbors models.

Examining the results of the age-specific intersubject 
RSA (Fig. 4), we found significant evidence of the Nearest 
Neighbors model in the Healthy Brain Network sample 
(251 significant nodes, 250 surviving multiple comparisons 
correction, familywise p < .0001). In line with our hypothe-
sis, this implies that there is greater neural synchrony 
among participants that are closer in age. As for the AnnaK 
model, we observe, in contrast to our behavioral findings, 
primarily negative correlations between brain similarity and 
AnnaK-defined behavioral similarity (165 significant nodes, 
145 surviving multiple comparisons correction, familywise 
p < .0001). This negative correlation implies that the older 
participants get, the more dissimilar they appear from each 
other, in terms of brain synchrony. In the Yale Attention 
dataset, neither the AnnaK nor the Nearest Neighbors 
models well described the relationship between brain and 
age similarity (13 and 14 significant nodes respectively,  
0 surviving multiple comparisons correction, familywise  
p-values >.47).

In sum, both the AnnaK model and the Nearest Neigh-
bors model described the relationship between age and 
intersubject correlation in the Healthy Brain Network 
sample. This raises the possibility, initially proposed by 
Finn et  al. (2020), that for some phenotypic measures, 
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modeling phenotypic similarity as a combination of the 
AnnaK and Nearest Neighbors models might yield the 
best fit to brain similarity (for instance, by using the for-
mula abs(i-j)* mean(i,j)). In the Yale Attention dataset, nei-
ther model was a good fit, although more research is 
necessary to determine if this is due to the constrained 
age range of this sample or some other factor.

3.3.7.  Intersubject representational similarity 
analysis in Healthy Brain Network subsamples

The Healthy Brain Network sample contains a large age 
range (6–22  years). Our main analysis controlled for age 
through residualization and did not assess if brain-behavior 
relationships differed as a function of age. To test this, we 
split our sample into thirds, based on the 33rd and 66th per-
centile ages (9.94, rounded to 10 years and 14.03 rounded 
to 14 years) to provide a roughly even split of participants 
by age bin. We then replicated the IS-RSA in participants 
[6,10) (n = 138), [10,14) (n = 130) and [14,18) (n = 132, same 
control matrices as prior analysis, see Methods). In the 
behavioral tasks and assessments, the results in the differ-
ent age bins appeared largely consistent with those 
observed in the full sample (Supplementary Fig. 11). One 
notable difference across age groups, however, is the mea-
sure which shows the most robust AnnaK effect. Language 
and working memory demonstrated the strongest effects 
at ages 6–10 and 10–14, respectively. This pattern of results 
is possibly due to differences in variability in the measures 
across the age bins, with greater variability providing more 

power to detect effects. For instance, the 6–10 age group 
demonstrates greater variability in the language measure 
(TOWRE) compared to the other two groups (ages 6–10 
standard deviation: 19.26, ages 10–14 standard deviation: 
16.54, ages 14–18 standard deviation: 13.94).

In contrast to the generally consistent brain-behavior 
relationships, the association between brain similarity 
and age varies by age group. In participants aged 
6–10 years, there is a positive AnnaK effect, meaning that 
neural synchrony increases with age. In the participants 
aged 10–14, there is a weaker positive AnnaK effect. 
Finally, in the oldest group, participants aged 14–18, 
there is a negative AnnaK effect, meaning that neural 
synchrony decreases with age.

In addition to the wide age range included in the 
Healthy Brain Network dataset, there are also a diverse 
range of clinical diagnoses represented in this sample. 
Do brain-behavior relationships vary as a function of 
diagnosis? Because the current sample was not large 
enough to perform a comprehensive investigation of 
each diagnosis, we chose to replicate the IS-RSA analy-
ses with a subsample of participants diagnosed with 
ADHD, the most common clinical diagnosis in the sample 
(n = 55; Supplementary Fig. 12). We find similar results to 
that of the full sample, with evidence of an AnnaK effect, 
where high scorers appear more similar to high scorers, 
with the strongest effect in the working memory measure 
(familywise p < .0001). These results suggest that char-
acterization of brain-behavior relationships with the 
AnnaK model is robust to ADHD diagnosis.

Fig. 4.  Relating age and neural synchrony with intersubject RSA. In the glass brain, nodes are colored according 
to representational similarity for each model in each dataset. Nodes with a black circle at their centroid demonstrate 
significant representational similarity (p < .05, after correction for 268 comparisons). Nodes with a gray circle are 
significant before multiple comparisons correction (p < .05). p-Values above the glass brains correspond to the whole-
brain familywise p-value (see Methods). Glass brains without p-values above all show familywise p > .05. The scatterplots 
to the right of the glass brains show the reliability of the effects as determined by a split-half analysis.
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4.  DISCUSSION

Recent work hypothesizes that similarities in behavior are 
reflected in similar BOLD responses to movies, but that 
this relationship does not always hold constant across 
the behavioral spectrum (Finn et al., 2020). Specifically, 
Finn and colleagues found that participants who scored 
highly on a test of working memory showed greater neu-
ral synchrony with other high scorers, while individuals 
who scored low appear less synchronized across the 
board. In this instance, neural similarity is indicative of 
behavioral similarity, but only in high-scoring participants. 
How does the relationship between neural similarity and 
behavior play out in other behavioral domains?

In the present study, we investigate this question, 
examining brain-behavior relationships in eight measures 
across samples from two datasets: the Healthy Brain Net-
work dataset (measures reflecting working memory, atten-
tion/executive function, language, depression/anxiety, 
and social function) and the Yale Attention dataset (behav-
ioral tasks scores, measuring working memory, sustained 
attention, and divided attention/tracking, respectively). 
Using intersubject-RSA, we tested two models of neural 
synchrony: 1. the Nearest Neighbors model, stating that 
individuals will look similar to those nearby on some 
behavioral scale and 2. the AnnaK model, stating that high 
scorers will look like other high scorers while low scorers 
will show greater variability (or vice versa). Overall, our 
analyses revealed greater evidence for the AnnaK model 
of brain-behavior relationships, particularly for the work-
ing memory task in the Healthy Brain Network Dataset 
and the sustained attention task in the Yale Attention 
dataset. Put another way, results here suggest that in 
tasks across datasets and behavioral measures, high 
scorers tend to resemble high scorers, whereas low scor-
ers appear dissimilar from everyone else. While the Near-
est Neighbors model also fits the data above chance for 
four of the eight measures tested, in no behavioral mea-
sure did it clearly outperform the AnnaK model when 
examining number of significant nodes and family-wise 
p-values. This finding is striking considering that the Near-
est Neighbors model is arguably a more common way of 
operationalizing the association between brain activity 
and cognitive performance. Our results replicate previous 
observations of AnnaK-style ISC-behavior associations 
(Finn et al., 2020) and underscore the importance of con-
sidering the meta-relationship between brain and behav-
ior. By explicitly testing how brain and behavior relate, 
researchers can avoid the potential pitfall of erroneously 
reporting an absence of a relationship due to implicitly 
assuming a certain type of relationship in their analyses.

An advantage of analyzing data from two datasets 
is  that we can assess the replicability of AnnaK effects 

across participant populations (children and adolescents 
vs. young adults), naturalistic stimuli (a narrative Despica-
ble Me movie clip vs. the non-narrative Inscapes film), 
and phenotypic measures (e.g., a list-sorting verbal 
working memory task vs. visual short-term memory task). 
We found evidence for AnnaK-style relationships in both 
datasets, suggesting that such effects are not confined 
to adult populations, uniquely evoked by narrative mov-
ies, or specific to one set of phenotypic measures. It is 
more difficult to interpret differences across datasets 
than consistency between them. For example, although 
we see stronger evidence for the AnnaK model in the 
Healthy Brain Network sample than the Yale Attention 
sample, it is unclear what drives this difference. It could 
arise from the age range and/or heterogeneity of the par-
ticipant sample (individuals recruited due to perceived 
clinical concerns vs. a non-clinical sample), the choice of 
movie, the study design (one vs. two scan sessions; see 
Supplementary Fig. 13 for analyses by session), the scan 
site (multiple sites in HBN vs. one site in Yale Attention) or 
imaging parameters, and/or noise. Future work charac-
terizing effects of age, naturalistic stimulus, phenotypic 
measure, and data type and amount will help address 
these questions.

When relating intersubject-RSA to age, we observed 
evidence for the Nearest Neighbors and AnnaK models in 
the Healthy Brain Network sample only. These results 
suggest that, in the Healthy Brain Network dataset, 
younger participants and participants closer in age show 
greater neural synchrony. While this result may seem curi-
ous when juxtaposed with our behavioral findings, it is in 
line with prior work demonstrating that ISC as measured 
with EEG decreases with age (participants aged 5–44) 
(Petroni et  al., 2018) and ISC as measured with fMRI 
decreases with age (participants aged 18–88) (Campbell 
et  al., 2015). However, existing literature is somewhat 
mixed with regard to the association between neural syn-
chrony and age, with some evidence suggesting that 
adults exhibit greater ISC compared to children (Cantlon 
& Li, 2013), particularly in the default mode network 
(Moraczewski et al., 2020). Another study analyzing data 
from the Healthy Brain Network found, in line with our 
findings here, more areas of the brain where ISC was 
greater in younger participants than older participants 
(Cohen et  al., 2022). Inconsistent with the current find-
ings, however, the same study reports higher ISC among 
older participants in the auditory cortex (Cohen et  al., 
2022) and another reports greater synchrony among older 
participants across the cortex more generally (Camacho 
et al., 2023). One factor that may contribute to this dis-
crepancy is our use of a relatively conservative motion 
threshold (mean framewise displacement <.15  mm) in 
determining our sample. While this criterion should help 
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safeguard against spurious motion-driven effects, we can-
not rule out the possibility that motion in this sample is 
related to another variable affecting ISC (Power et  al., 
2012). Additionally, our analyses include all ages available 
in the Healthy Brain Network dataset (ages 6–22  years); 
when excluding participants 16  years and older (as in 
Camacho et al., 2023), we observe a primarily positive rela-
tionship between age and intersubject correlation (see 
Supplementary Fig. 14). Consequently, future work remains 
to elucidate how ISC changes across development.

The AnnaK model may help us to characterize the 
nature of brain-behavior similarity, but future research is 
needed to determine the source of increased variance for 
one side of a behavioral scale. How can we understand 
features characteristic of the end of the spectrum marked 
by greater heterogeneity? One approach which may 
prove useful is the classification of behavioral perfor-
mance. Among individuals with the same summary score 
on a behavioral task, there may be clusters of partici-
pants that can be differentiated based on their patterns 
of responses. For instance, perhaps some individuals 
take longer to recover after making errors. A separate 
group of participants may quickly regain focus after 
errors but show a marked deterioration in performance 
near the end of the task, as their concentration wanes. If 
neural similarity is higher within these clusters, but lower 
across them, this could help explain why there is more 
variation in brain activity among low-scoring individuals. 
In this hypothetical case, the original behavioral metric 
does not align well with neural variability and conse-
quently obscures a Nearest-Neighbors relationship. 
However, there may be a limit to how well we can char-
acterize this variability using individual differences 
approaches, if low-scoring individuals appear not only 
dissimilar to each other, but dissimilar to themselves. 
This may prove to be the case, considering recent work 
showing that intra-individual variability is associated with 
worse task performance, both in terms of session-to-
session whole-brain functional connectivity (Corriveau 
et al., 2022) as well as trial-by-trial patterns of hippocam-
pal activity (Poh et  al., 2022). In other words, in some 
instances, there may be a “true” AnnaK effect, rather 
than a Nearest Neighbors effect, which is obfuscated by 
an inadequate behavioral scale.

Making use of two open datasets, we demonstrated 
an AnnaK effect in disparate samples in measures of 
attention and cognition. Moving forward, future work can 
leverage open data to further test hypotheses regarding 
the meta-relationship between brain and behavior in 
diverse samples that researchers might not have access 
to at their individual institutions. Collection of continuous 
measures is key to this effort, as it enables IS-RSA and 
other data-driven approaches that rely on testing individ-

ual differences on a spectrum rather than simple con-
trasts comparing one group to another (i.e., testing for 
differences in patient vs. controls). Furthermore, future 
research might investigate similarity of other aspects of 
brain function and organization, such as correlation of 
functional connectivity patterns or agreement between 
functional subnetworks (Glerean et al., 2016).

The present study aimed to further elucidate the con-
nection between similarity in brain activity and similarity 
in behavior. Using intersubject representational similar-
ity analysis, we conceptually replicated prior work and 
empirically assessed assumptions in cognitive neurosci-
ence research which may otherwise go untested. In con-
tinuing to map the space of neural and behavioral 
similarity, future work will reveal the structure governing 
how neural activity produces our idiosyncrasies as  
individuals.
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